Titanium and Chromium Determination in Feedstuffs Using ICP-AES Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Reagents and Standard Solutions
2.3. Sample Collection
2.4. Sample Preparation of Dry Feeds
3. Results and Discussion
3.1. Calibration Studies
3.2. Figures of Merit
3.3. Application to Commercialyl Available Feedstuffs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thompson, A. Ingredients: Where Pet Food Starts. Top. Companion Anim. Med. 2008, 23, 127–132. [Google Scholar] [CrossRef]
- Barnett, M.C.; Forster, N.A.; Ray, G.A.; Li, L.; Guppy, C.N.; Hegarty, R.S. Using portable X-ray fluorescence (pXRF) to determine fecal concentrations of non-absorbable digesta kinetic and digestibility markers in sheep and cattle. Anim. Feed Sci. Technol. 2016, 212, 35–41. [Google Scholar] [CrossRef]
- Jani, P.; McCarthy, D.; Florence, A. Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int. J. Pharm. 1994, 105, 157–168. [Google Scholar] [CrossRef]
- Jagger, S.; Wiseman, J.; Cole, D.; Craigon, J. Evaluation of inert markers for the determination of ileal and faecal apparent digestibility values in the pig. Br. J. Nutr. 1992, 68, 129–139. [Google Scholar] [CrossRef]
- Titgemeyer, E.C.; Armendariz, C.K.; Bindel, D.J.; Greenwood, R.H.; Loest, C.A. Evaluation of titanium dioxide as a digestibility marker for cattle. Am. Soc. Anim. Sci. 2001, 79, 1059–1063. [Google Scholar] [CrossRef]
- Boguhn, J.; Baumgartel, T.; Dieckmann, A.; Rodehutscord, M. Determination of titanium dioxide supplements in different matrices using two methods involving photometer and inductively coupled plasma optical emission spectrometer measurements. Arch. Anim. Nutr. 2009, 63, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical Note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. Am. Soc. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, J.; Batistel, F.; Welter, K.C.; Silva, M.M.; Costa, D.F.; Santos, F.A.P. Evaluation of external markers to estimate fecal excretion, intake, and digestibility in dairy cows. Trop. Anim. Health Prod. 2015, 47, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Excretion patterns of titanium dioxide and chromic oxide in duodenal digesta and feces of ewes. Small Rumin. Res. 2006, 63, 135–214. [Google Scholar] [CrossRef]
- Janus, M. Titanium Dioxide as Food Additive. In Application of Titanium Dioxide; IntechOpen: London, UK, 2017. [Google Scholar]
- Glindemann, T.; Tas, B.M.; Wang, C.; Alvers, S.; Susenbeth, A. Evaluation of titanium dioxide as an inert marker for estimating faecal excretion in grazing sheep. Anim. Feed Sci. Technol. 2009, 152, 186–197. [Google Scholar] [CrossRef]
- Huhtanen, P.; Kaustell, K.; Jaakkola, S. The use of internal markers to predict total digestibility and duodenal flow of nutrients in cattle given six different diets. Anim. Feed Sci. Technol. 1994, 48, 211–227. [Google Scholar] [CrossRef]
- Spears, J.W.; Whisnant, C.S.; Huntington, G.B.; Lloyd, K.E.; Fry, R.S.; Krafka, K.; Lamptey, A. Chromium propionate enhances insulin sensitivity in growing cattle. J. Dairy Sci. 2012, 95, 2037–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Rodriguez, C.F.; Yuan, K.; Titgemeyer, E.C.; Mamedova, L.K.; Griswold, K.E.; Bradford, B.J. Effects of supplemental chromium propionate and rumen-protected amino acids on productivity, diet digestibility, and energy balance of peak-lactation dairy cattle. J. Dairy Sci. 2014, 97, 3815–3821. [Google Scholar] [CrossRef]
- Andrade Korn, M.D.G.; da Boa Morte, E.S.; Batista dos Santos, D.C.M.; Castro, J.T.; Barbosa, J.T.P.; Teixeira, A.P.; Fernandes, A.P.; Welz, B.; dos Santos, W.P.C.; Nunes dos Santos, E.B.G.; et al. Sample Preparation for the Determination of Metals in Food Samples Using Spectroanalytical Methods—A Review. Appl. Spectrosc. Rev. 2008, 43, 67–92. [Google Scholar] [CrossRef]
- Oliveira, E. Sample Preparation for Atomic Spectroscopy: Evolution and Future Trends. J. Braz. Chem. Soc. 2003, 14, 174–182. [Google Scholar] [CrossRef]
- Santos, W.P.C.; Castro, J.T.; Bezerra, M.A.; Fernandes, A.P.; Ferreira, S.L.C.; Korn, M.G.A. Multivariate optimisation of ICP OES instrumental parameters for Pb/Ba/Sb measurement in gunshot residues. Microchem. J. 2009, 91, 153–158. [Google Scholar] [CrossRef]
- da Costa, S.S.L.; Pereira, A.C.L.; Passos, E.A.; Alves, P.J.H.; Garcia, C.A.B.; Araujo, R.G.O. Multivariate optimization of an analytical method for the analysis of dog and cat foods by ICP OES. Talanta 2013, 108, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.G.; White, S.D.; Weir, R.D. Elemental composition of dog foods using nitric acid and simulated gastric digestions. Food Chem. Toxicol. 2013, 55, 568–577. [Google Scholar] [CrossRef]
- Morgan, N.K.; Scholey, D.V.; Burton, E.J. A comparison of two methods for determining titanium dioxide marker content in broiler digestibility studies. Animal 2014, 10, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Miranda, M.; Benedito, J.L.; Blanco-Penedo, I.; Lopez-Lamas, C.; Merino, A.; Lopez-Alonso, M. Metal accumulation in cattle raised in a serpentine-soil area: Relationship between metal concentrations in soil, forage and animal tissues. J. Trace Elem. Med. Biol. 2009, 23, 231–238. [Google Scholar] [CrossRef]
- Oliveira, A.F.; Nogueira, A.R.A.; da Silva, C.S.; Silva, C.S. The use of diluted formic acid in sample preparation for macro- and microelements determination in foodstuff samples using ICP OES. J. Food Compos. Anal. 2018, 66, 7–12. [Google Scholar] [CrossRef]
- Zachariadis, G.A. Inductively Coupled Plasma Atomic Emission Spectrometry: A Model Multi-Elemental Technique for Modern Analytical Laboratory; Nova Science Publishers: New York, NY, USA, 2011; pp. 18–65. [Google Scholar]
- Pedro, N.A.R.; Oliveira, E.; Cadore, S. Study of the mineral content of chocolate flavoured beverages. Food Chem. 2006, 95, 94–100. [Google Scholar] [CrossRef]
- Ferreira, H.S.; Santos, A.C.N.; Portugal, L.A.; Costa, A.C.S.; Miro, M.; Ferreira, S.L.C. Pre-concentration procedure for determination of copper and zinc in food samples by sequential multi-element flame atomic absorption spectrometry. Talanta 2008, 77, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Batista, B.L.; Rodrigues, J.L.; Souza, S.S.; Souza, V.C.O.; Barbosa, J.R.F. Mercury speciation in seafood samples by LC–ICP-MS with a rapid ultrasound-assisted extraction procedure: Application to the determination of mercury in Brazilian seafood samples. Food Chem. 2011, 126, 2000–2004. [Google Scholar] [CrossRef] [PubMed]
- IUPAC. Compendium in Chemical Terminology, Version 2014; Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
Instrumental Parameters | ||||
---|---|---|---|---|
Parameter | Value | |||
Radiofrequency (RF) generator | 40 MHz, free-running | |||
RF incident power | 1350 W | |||
Torch type | Fassel type | |||
Injector, id | Alumina, 2.0 mm | |||
Viewing mode | Axial | |||
Auxiliary argon flow rate | 0.50 L min−1 | |||
Nebulizer | Gem tip cross flow | |||
Plasma gas flow rate | 15 L min−1 | |||
Spray chamber type | Scott-double pass | |||
Polychromator | Echelle grating | |||
Sample propulsion | Peristaltic pump, three channel | |||
Sample uptake flow rate | 2 mL min−1 | |||
Detector | Segmented-array charge-coupled (SCD) | |||
Delay time | 30 s | |||
Measurement Conditions | ||||
Analyte | Spectral line (nm) | |||
Ti | 334.940 | 336.121 | 337.279 | 368.519 |
Cr | 283.563 | 284.325 | 357.869 |
Feedstuff Weight | Digestion Mixture | Digestion Process | Digestion Time | Observations |
---|---|---|---|---|
0.5 g | 5 mL H2O | Boiling, 100 °C | 20 min | No dissolution was observed |
0.5 g | 5 mL conc. HCl (37%) | Heating, 30 °C | 5 min | No dissolution was observed |
0.5 g | 5 mL H2O2 (30%) | Heating, 130 °C | 5 min | No dissolution was observed |
0.5 g | 5 mL conc. HNO3 | Boiling, 120 °C | 5 min | No dissolution was observed |
0.5 g | 3 mL conc. H2SO4 and 3 mL conc. H2SO4 after 1 h | Room temperature | 1–2 h | No significant dissolution was observed |
0.5 g | 6 mL conc. H2SO4 | Heating (130 °C) and then add 5 mL conc. H2SO4 | 3 min | Light precipitation |
0.5 g | 8 mL conc. H2SO4 and 3 mL conc. HNO3 | conc.H2SO4 heating (130 °C) for 4 min, then add conc. HNO3 while heating | 8 min | Good dissolution, but dark brown colored solutions |
0.5 g | 10 mL conc. HNO3 and 10 mL conc. H2SO4 | conc. HNO3 boiling (120 °C) for 2 min, then addition of conc. H2SO4 while heating (150 °C) for 4 min | 6 min | Clear, colorless solution |
Element | Wavelength (nm) | Slope (cps/(mg/L)) | Intercept (cps) | Standard Error | r |
---|---|---|---|---|---|
Ti | 334.940 | 333 ± 11 | 3.8 | 3.59 | 0.9998 |
336.121 | 400 ± 7 | 2.3 | 2.32 | 0.9999 | |
337.279 | 276 ± 4 | 7.0 | 1.39 | 0.9999 | |
368.519 | 144 ± 2 | 2.0 | 0.79 | 0.9999 | |
Cr | 283.563 | 62 ± 1 | 34.0 | 0.31 | 0.9999 |
284.325 | 44.5 ± 0.7 | 32.0 | 0.22 | 0.9999 | |
357.869 | 118 ± 3 | 0.4 | 0.95 | 0.9999 |
Element | Wavelength (nm) | LOD (μg/g) | LOQ (μg/g) |
---|---|---|---|
Ti | 334.940 | 13.4 | 44.9 |
336.121 | 11.4 | 37.5 | |
337.279 | 16.1 | 52.9 | |
368.519 | 12.1 | 40.9 | |
Cr | 283.563 | 38.2 | 127.3 |
284.325 | 36.2 | 119.9 | |
357.869 | 10.7 | 36.2 |
Element | Wavelength (nm) | RSD% | ||||||
---|---|---|---|---|---|---|---|---|
0.25 mg/L | 1.00 mg/L | 5.00 mg/L | 10.00 mg/L | AFS-1 | AFS-3 | AFS-5 | ||
Ti | 334.940 | 0.6 | 0.5 | 1.6 | 0.1 | 2.8 | 2.3 | 2.1 |
336.121 | 0.5 | 0.1 | 1.5 | 1.2 | 2.4 | 2.4 | 2.3 | |
337.279 | 1.2 | 0.1 | 1.5 | 1.0 | 2.4 | 2.9 | 2.3 | |
368.519 | 1.1 | 0.3 | 1.5 | 1.2 | 2.3 | 3.1 | 2.5 | |
Cr | 283.563 | 0.1 | 0.1 | 1.3 | 1.4 | 2.5 | 2.7 | 2.5 |
284.325 | 0.5 | 0.1 | 1.4 | 1.2 | 2.6 | 3.0 | 3.2 | |
357.869 | 0.8 | 2.1 | 0.9 | 0.3 | 2.1 | 2.7 | 2.9 |
Element | Wavelength (nm) | R% from Aqueous Solutions | R% of AFS-1 | R% of AFS-3 | R% of AFS-5 | |||
---|---|---|---|---|---|---|---|---|
50 mg Addition | 0.5 mg Addition | 50 mg Addition | 0.5 mg Addition | 50 mg Addition | 0.5 mg Addition | |||
Ti | 334.940 | 103.9 | 98.3 | 97 | 103.3 | 99.1 | 93.3 | 90.2 |
336.121 | 89.5 | 79.0 | 75 | 85.0 | 80 | 78.0 | 70.1 | |
337.279 | 91.2 | 81.3 | 80 | 86.7 | 83.6 | 79.7 | 75.6 | |
368.519 | 89.7 | 79.7 | 74.3 | 84.7 | 80 | 78.0 | 72 | |
Cr | 283.563 | 85.3 | 81.5 | 79 | 80.0 | 74.4 | 76.9 | 72.5 |
284.325 | 86.8 | 81.5 | 79 | 81.5 | 79.2 | 78.5 | 75.8 | |
357.869 | 104.2 | 92.3 | 91.1 | 95.4 | 92.5 | 93.8 | 91.4 |
Element | Wavelength (nm) | Dog food | Cat Food | Poultry Food | ||||||
---|---|---|---|---|---|---|---|---|---|---|
AFS-1 | AFS-2 | AFS-3 | AFS-4 | AFS-5 | AFS-6 | |||||
Non Spiked | Spiked (50 mg) | Non Spiked | Spiked (50 mg) | Non Spiked | Spiked (50 mg) | |||||
Ti | 334.940 | <LOD | 130.43 (±14.00) | <LOD | 0.70 (±0.08) | 207.79 (±2.4) | 0.70 (±0.05) | 0.82 (±0.26) | 187.35 (±1.90) | 1.35 (±0.35) |
Cr | 357.869 | 0.10 (±0.01) | 40.09 (±2.51) | 0.10 (±0.01) | 0.18 (±0.08) | 41.75 (±0.98) | 0.10 (±0.02) | 0.07 (±0.01) | 40.83 (±0.56) | 0.07 (±0.01) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsanaktsidou, E.; Zachariadis, G. Titanium and Chromium Determination in Feedstuffs Using ICP-AES Technique. Separations 2020, 7, 1. https://doi.org/10.3390/separations7010001
Tsanaktsidou E, Zachariadis G. Titanium and Chromium Determination in Feedstuffs Using ICP-AES Technique. Separations. 2020; 7(1):1. https://doi.org/10.3390/separations7010001
Chicago/Turabian StyleTsanaktsidou, Eleni, and George Zachariadis. 2020. "Titanium and Chromium Determination in Feedstuffs Using ICP-AES Technique" Separations 7, no. 1: 1. https://doi.org/10.3390/separations7010001
APA StyleTsanaktsidou, E., & Zachariadis, G. (2020). Titanium and Chromium Determination in Feedstuffs Using ICP-AES Technique. Separations, 7(1), 1. https://doi.org/10.3390/separations7010001