Hemp Growth Factors and Extraction Methods Effect on Antimicrobial Activity of Hemp Seed Oil: A Systematic Review
Abstract
:1. Introduction
- To elucidate the effects of hemp’s growth factors (temperature, rainfall, and humidity soil types) on the antimicrobial activity of hemp oils using existing evidence from peer-reviewed articles.
- To find out the various existing extraction methods on the antimicrobial activity of hemp oils.
- To provide the updated existing literature on the hemp-derived products’ antimicrobial and antioxidant effects.
2. Materials and Methods
2.1. Search Procedures
- Publication years were between 2004 and 2020;
- The keywords ‘‘hemp oil” AND ‘‘antimicrobial activity”; “hemp oil and climatic indicators”; hemp extraction method AND antimicrobial activity had to appear in the title and abstract;
- They had to be scientific indexed papers only.
2.2. Screening
- “Primary articles” Research papers appeared in the peer-reviewed literature and reported original data or results based on observations and experiments.
- “Methods” papers evaluated or described an investigative technique for the extraction of chemical compounds of hemp oil.
- “Review” papers summarized the understanding of bioactivity of hemp oil and antimicrobial activity [26].
2.3. Data Extraction and Reporting
3. Result and Discussion
3.1. Hemp-Derived Products’ Major Constituents Influence on Antimicrobial Activity
3.2. Climatic Indicators (Temperature, Rainfall, and Humidity) on Antimicrobial Activity of Hemp Seed Oil
3.3. Soil Type on the Effects of Antimicrobial Activity of Hemp Oils
3.4. The Effects of Extraction Methods on Antimicrobial Effects of Hemp Oils
3.5. Bacteria and Fungi Most Sensitive to HSO, HEO, Cannabinoids, and HLE (N = 11)
3.5.1. HSO
3.5.2. HEO
3.6. Cannabinoids and HLEs
3.7. Antioxidant Activity of Hemp Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HSO | Hemp Seed Oil |
CBD | Cannabidiol |
HSH | Hemp Seed Hull |
HSF | Hemp Seed Flour |
HPH | Hydrolyzed Hemp Seed Protein |
DPPH | 2,2-Diphenylpicrylhydrazyl |
LA | Linoleic Acid |
ALA | Alpha Linolenic Acid |
PUFAs | Polyunsaturated Fatty Acids |
GLA | Gamma Linoleic Acid |
HEO | Hemp Essential Oil |
THC | Tetrahydrocannabinol |
ZGI | Zone of Growth Inhibition |
MIC | Minimal Inhibition Concentration |
CBG | Cannabigerol |
HLE | Hemp Leaf Extract |
BC | Bacillus cereus |
BS | Bacillus subtilis |
CF | Citrobacter freundii |
ML | Micrococcus luteus |
SA | Staphylococcus aureus |
StE | Staphylococcus epidermidis |
EC | Escherichia coli |
EF | Enterococcus faecalis |
SaE | Salmonella enteritidis |
SeM | Serratia marcescens |
PA | Pseudomonas aeruginosa |
AN | Aspergillus niger |
CA | Candida albicans |
SP | Streptococcus pneumoniae |
YE | Yersinia enterocolitica |
CK | Candida krusei |
CT | Candida tropicalis |
ST | Salmonella typhimurium |
StM | Streptococcus mutans |
SC | Saccharomyces cerevisiae |
KP | Klebsiella pneumoniae |
DT | Distillation Time |
mm | Millimeters |
A | Acetone |
M | Methanol |
CBDA | Cannabidiolic Acid |
ABTS | 2,2′-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid (biochemical reagent) |
HSK | Hemp Seed Kernel |
SHR | Spontaneous Hypersensitive Rats |
TAC | Total Antioxidant Capacity |
SOD | Superoxide Dismutase |
CAT | Catalase |
T1 | Trial One |
T2 | Trial Two |
T3 | Trial Three |
T4 | Trial Four |
References
- Hayase, S. Manila Hemp in World, Regional, National and Local History. J. Asia-Pac. Stud. 2018, 3, 171–181. [Google Scholar]
- Li, H.-L. An archaeological and historical account of cannabis in China. Econ. Bot. 1973, 28, 437–448. [Google Scholar] [CrossRef]
- Adesina, I.; Bhowmik, A.; Sharma, H.; Shahbazi, A. A Review on the Current State of Knowledge of Growing Conditions, Agronomic Soil Health Practices and Utilities of Hemp in the United States. Agriculture 2020, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- Mikulcová, V.; Kašpárková, V.; Humpolíček, P.; Buňková, L. Formulation, characterization and properties of hemp seed oil and its emulsions. Molecules 2017, 22, 700. [Google Scholar] [CrossRef]
- Pasqua, T.; Rocca, C.; Lupi, F.R.; Baldino, N.; Amelio, D.; Parisi, O.I.; Granieri, M.C.; De Bartolo, A.; Lauria, A.; Dattilo, M.; et al. Cardiac and Metabolic Impact of Functional Foods with Antioxidant Properties Based on Whey Derived Proteins Enriched with Hemp Seed Oil. Antioxidants 2020, 9, 1066. [Google Scholar] [CrossRef]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect οf Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [Green Version]
- Deferne, J.L.; Pate, D.W. Hemp seed oil: A source of valuable essential fatty acids. J. Int. Hemp. Assoc. 1996, 3, 1–7. [Google Scholar]
- Hazekamp, A.; Fischedick, J.T.; Díez, M.L.; Lubbe, A.; Ruhaak, R.L. Chemistry of Cannabis. Comprehensive Natural Products II; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1033–1084. [Google Scholar] [CrossRef]
- Ali, E.M.M.; Almagboul, A.Z.I.; Khogali, S.M.E.; Gergeir, U.M.A. Antimicrobial Activity of Cannabis sativa L. Chin. Med. 2012, 03, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Uluata, S.; Özdemir, N. Antioxidant Activities and Oxidative Stabilities of Some Unconventional Oilseeds. J. Am. Oil Chem. Soc. 2011, 89, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- García-Tejero, I.; Zuazo, V.H.D.; Sánchez-Carnenero, C.; Hernández, A.; Ferreiro-Vera, C.; Casano, S. Seeking suitable agronomical practices for industrial hemp (Cannabis sativa L.) cultivation for biomedical applications. Ind. Crop. Prod. 2019, 139, 111524. [Google Scholar] [CrossRef]
- Martinenghi, L.D.; Jønsson, R.; Lund, T.; Jenssen, H. Isolation, Purification, and Antimicrobial Characterization of Cannabidiolic Acid and Cannabidiol from Cannabis sativa L. Biomolecules 2020, 10, 900. [Google Scholar] [CrossRef]
- Ferenczy, L.; Gracza, L.; Jakobey, I. An antibacterial preparatum from hemp (Cannabis sativa L.). Naturwissenschaften 1958, 45, 188. [Google Scholar] [CrossRef]
- Appendino, G.; Gibbons, S.; Giana, A.; Pagani, A.; Grassi, G.; Stavri, M.; Smith, E.; Rahman, M. Antibacterial Cannabinoids from Cannabis sativa: A Structure−Activity Study. J. Nat. Prod. 2008, 71, 1427–1430. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Sikora, V.; Dincheva, I.; Kačániová, M.; Astatkie, T.; Semerdjieva, I.B.; Latkovic, D. Industrial, CBD, and Wild Hemp: How Different Are Their Essential Oil Profile and Antimicrobial Activity? Molecules 2020, 25, 4631. [Google Scholar] [CrossRef]
- Murray, D. CBD Oil vs. Hemp Seed Oil: How to Know What You’re Paying For. Healthline. 2020. Available online: https://www.healthline.com/health/hemp-vs-cbd-oil (accessed on 2 July 2021).
- Fathordoobady, F.; Singh, A.; Kitts, D.D.; Pratap Singh, A. Hemp (Cannabis sativa L.) extract: Antimicrobial properties, methods of extraction, and potential oral delivery. Food Rev. Int. 2019, 35, 664–684. [Google Scholar] [CrossRef]
- Citti, C.; Pacchetti, B.; Vandelli, M.A.; Forni, F.; Cannazza, G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J. Pharm. Biomed. Anal. 2018, 149, 532–540. [Google Scholar] [CrossRef]
- Senila, L.; Neag, E.; Cadar, O.; Kovacs, M.H.; Becze, A.; Senila, M. Chemical, Nutritional and Antioxidant Characteristics of Different Food Seeds. Appl. Sci. 2020, 10, 1589. [Google Scholar] [CrossRef] [Green Version]
- Kriese, U.; Schumann, E.; Weber, W.; Beyer, M.; Brühl, L.; Matthäus, B. Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica 2004, 137, 339–351. [Google Scholar] [CrossRef]
- Sáez-Pérez, M.; Brümmer, M.; Durán-Suárez, J. A review of the factors affecting the properties and performance of hemp aggregate concretes. J. Build. Eng. 2020, 31, 101323. [Google Scholar] [CrossRef]
- Mediavilla, V.; Leupin, M.; Keller, A. Influence of the growth stage of industrial hemp on the yield formation in relation to certain fibre quality traits. Ind. Crop. Prod. 2001, 13, 49–56. [Google Scholar] [CrossRef]
- Amaducci, S.; Zatta, A.; Raffanini, M.; Venturi, G. Characterisation of hemp (Cannabis sativa L.) roots under different growing conditions. Plant. Soil 2008, 313, 227–235. [Google Scholar] [CrossRef]
- Struik, P.C.; Amaducci, S.; Bullard, M.J.; Stutterheim, N.C.; Venturi, G.; Cromack, H.T.H. Agronomy of fibre hemp (Cannabis sativa L.) in Europe. Ind. Crop. Prod. 2000, 11, 107–118. [Google Scholar] [CrossRef]
- Gurwick, N.P.; Moore, L.A.; Kelly, C.; Elias, P. A Systematic Review of Biochar Research, with a Focus on Its Stability in situ and Its Promise as a Climate Mitigation Strategy. PLoS ONE 2013, 8, e75932. [Google Scholar] [CrossRef] [Green Version]
- Togliatti, K.; Archontoulis, S.V.; Dietzel, R.; Puntel, L.; VanLoocke, A. How does inclusion of weather forecasting impact in-season crop model predictions? Field Crop. Res. 2017, 214, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Weatherspark. Available online: https://weatherspark.com (accessed on 10 June 2021).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Zheljazkov, V.D.; Sikora, V.; Semerdjieva, I.B.; Kačániová, M.; Astatkie, T.; Dincheva, I. Grinding and Fractionation during Distillation Alter Hemp Essential Oil Profile and Its Antimicrobial Activity. Molecules 2020, 25, 3943. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Verma, S.K.; Chauhan, A.; Darokar, M.P. The essential oil of ‘bhang’ (Cannabis sativa L.) for non-narcotic applications. Curr. Sci. 2014, 107, 645–650. [Google Scholar]
- Leizer, C.; Ribnicky, D.; Poulev, A.; Dushenkov, S.; Raskin, I. The Composition of Hemp Seed Oil and Its Potential as an Important Source of Nutrition. J. Nutraceuticals Funct. Med. Foods 2000, 2, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Lambert, D.M.; Fowler, C.J. The Endocannabinoid System: Drug Targets, Lead Compounds, and Potential Therapeutic Applications. J. Med. Chem. 2005, 48, 5059–5087. [Google Scholar] [CrossRef]
- Russo, R.; Reggiani, R. Variability in Antinutritional Compounds in Hempseed Meal of Italian and French Varieties. Plant 2013, 1, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Blaskovich, M.A.T.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; Lowe, G.J.; Hinton, A.O.; Pham, D.M.T.; Zuegg, J.; et al. The antimicrobial potential of cannabidiol. Commun. Biol. 2021, 4, 7. [Google Scholar] [CrossRef]
- Raetz, C.R.H.; Ulevitch, R.I.; Wright, S.D.; Sibley, C.H.; Ding, A.; Nathan, C.F. Gram-negative endotoxin: An extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J. 1991, 5, 2652–2660. [Google Scholar] [CrossRef] [Green Version]
- Sieniawska, E.; Swatko-Ossor, M.; Sawicki, R.; Skalicka-Woźniak, K.; Ginalska, G. Natural Terpenes Influence the Activity of Antibiotics against Isolated Mycobacterium tuberculosis. Med. Princ. Pract. 2016, 26, 108–112. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Chen, Y.-W.; Hou, C.-Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Nasser AL-Jabri, N.; Hossain, M.A. Comparative chemical composition and antimicrobial activity study of essential oils from two imported lemon fruits samples against pathogenic bacteria. Beni-Suef Univ. J. Basic Appl. Sci. 2014, 3, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Zheljazkov, V.D.; Kacaniova, M.; Dincheva, I.; Radoukova, T.; Semerdjieva, I.B.; Astatkie, T.; Schlegel, V. Essential oil composition, antioxidant and antimicrobial activity of the galbuli of six juniper species. Ind. Crop. Prod. 2018, 124, 449–458. [Google Scholar] [CrossRef]
- Wagner-Graham, M.A.; Barndt, H.; Sunderland, M.A. Measurement of antibacterial properties of foil-backed electrospun nanofibers. Fash. Text. 2019, 6, 30. [Google Scholar] [CrossRef]
- Naveed, M.; Khan, T.A.; Ali, I.; Hassan, A.; Ali, H.; Ud, Z.; Din, Z.H.; Hassan, Z.; Tabassum, S. In vitro antibacterial activity of Cannabis sativa leaf extracts to some selective pathogenicbacterial strains. Int. J. Biosci. 2014, 4, 65–70. [Google Scholar]
- Mkpenie, V.N.; Essien, E.E.; Udoh, I.I. Effect of extraction conditions on total polyphenol contents, antioxidant and antimicrobial activities of Cannabis sativa L. Electron. J. Environ. Agric. Food Chem. 2012, 11, 300–307. [Google Scholar]
- Ali, N.A.A.; Chhetri, B.K.; Dosoky, N.S.; Shari, K.; Al-Fahad, A.J.A.; Wessjohann, L.; Setzer, W.N. Antimicrobial, Antioxidant, and Cytotoxic Activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) Essential Oils. Medicines 2017, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.M.; Noletto, J.A.; Vogler, B.; Setzer, W.N. Abaco Bush Medicine: Chemical Composition of the Essential Oils of Four Aromatic Medicinal Plants from Abaco Island, Bahamas. J. Herbs Spices Med. Plants 2007, 12, 43–65. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Schmidt, E.; Bail, S.; Friedl, S.M.; Jirovetz, L.; Buchbauer, G.; Wanner, J.; Denkova, Z.; Slavchev, A.; Stoyanova, A.; Geissler, M. Antimicrobial Activities of Single Aroma Compounds. Nat. Prod. Commun. 2010, 5, 1365–1368. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.; Zitterl-Eglseer, K.; Deans, S.G.; Franz, C.M. Essential oils of different cultivars of Cannabis sativa L. and their antimicrobial activity. Flavour Fragr. J. 2001, 16, 259–262. [Google Scholar] [CrossRef]
- Kleinhenz, M.D.; Magnin, G.; Ensley, S.M.; Griffin, J.J.; Goeser, J.; Lynch, E.; Coetzee, J.F. Nutrient concentrations, digestibility, and cannabinoid concentrations of industrial hemp plant components. Appl. Anim. Sci. 2020, 36, 489–494. [Google Scholar] [CrossRef]
- Walsh, S.E.; Maillard, J.Y.; Russell, A.D.; Catrenich, C.E.; Charbonneau, D.L.; Bartolo, R.G. Activity and mechanisms of action of selected biocidal agents on Gram-positive and-negative bacteria. J. Appl. Microbiol. 2003, 94, 240–247. [Google Scholar] [CrossRef]
- Roseberg, R.J.; Jeliazkov, V.D.; Angima, S.D. Soil, Seedbed Preparation and Seeding for Hemp’ OSU Oregan State University. 2019. Available online: https://catalog.extension.oregonstate.edu/em9239/html (accessed on 2 June 2021).
- Harper, J.K.; Collins, A.; Kime, L.; Roth, G.W.; Manzo, H.E. Industrial Hemp Production, PenneState Extension. 2018. Available online: https://extension.psu.edu/industrial-hemp-production (accessed on 5 June 2021).
- Ros, M.; Hernandez, M.T.; García, C. Soil microbial activity after restoration of a semi-arid soil by organic amendments. Soil Biol. Biochem. 2003, 35, 463–469. [Google Scholar] [CrossRef]
- Mihailović, V.; Ćupina, B.; Hill, G.D.; Mikić, A.; Święcicki, W.; Jones, R.; Eickmeyer, F. Grain yield components of white lupin lines grown on a chernozem soil in Serbia. In México, Where Old and New World Lupins Meet, Proceedings of the 11th International Lupin Conference, Guadalajara, Mexico, 4–9 May 2005; International Lupin Association: Canterbury, New Zealand, 2006; pp. 99–101. [Google Scholar]
- Verheye, W. Soils of the humid and sub-humid tropics. In Land Use, Land Cover and Soil Sciences—Volume VII: Soils and Soil Sciences-2; EOLSS Publications: Oxford, UK, 2009; Volume 7, p. 121. [Google Scholar]
- Deshpande, S.B.; Fehrenbacher, J.B.; Ray, B.W. Mollisols of Tarai region of Uttar Pradesh, Northern India, Genesis and classification. Geoderma 1971, 6, 195–201. [Google Scholar] [CrossRef]
- Larum, D. What Does Well Drained Soil Mean: How To Get A Well-Drained Garden Soil. Gardening Know How. 2020. Available online: https://www.gardeningknowhow.com/garden-how-to/soil-fertilizers/what-is-well-drained-garden-soil.htm (accessed on 21 June 2021).
- Brighenti, V.; Pellati, F.; Steinbach, M.; Maran, D.; Benvenuti, S. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp). J. Pharm. Biomed. Anal. 2017, 143, 228–236. [Google Scholar] [CrossRef]
- Monroy, Y.M.; Rodrigues, R.A.; Sartoratto, A.; Cabral, F.A. Extraction of bioactive compounds from cob and pericarp of purple corn (Zea mays L.) by sequential extraction in fixed bed extractor using supercritical CO2, ethanol, and water as solvents. J. Supercrit. Fluids 2016, 107, 250–259. [Google Scholar] [CrossRef]
- Sidhu, M.C.; Sharma, T. Antihyperglycemic activity of petroleum ether leaf extract of Ficus krishnae L. on alloxan-induced diabetic rats. Indian J. Pharm. Sci. 2014, 76, 323. [Google Scholar] [PubMed]
- Teh, S.-S.; Birch, J. Physicochemical and quality characteristics of cold-pressed hemp, flax and canola seed oils. J. Food Compos. Anal. 2013, 30, 26–31. [Google Scholar] [CrossRef]
- Yilmaz, E.; Güneşer, B.A. Cold pressed versus solvent extracted lemon (Citrus limon L.) seed oils: Yield and properties. J. Food Sci. Technol. 2017, 54, 1891–1900. [Google Scholar] [CrossRef]
- Carus, M.; Sarmento, L. The European Hemp Industry: Cultivation, Processing and Applications for Fibres, Shivs, Seeds and Flowers; European Industrial Hemp Association: Hürth, Germany, 2016; pp. 1–9. [Google Scholar]
- Vivek, V. The Usages of Every Part of Hemp Plant’ Hemp Foundation. 2019. Available online: https://hempfoundation.net/the-usages-of-every-part-of-hemp-plant/#:~:text=The%204%20parts%20of%20a,availability%20like%20cotton%20and%20petrol (accessed on 21 July 2021).
- Audu Sambo, B.; Ofojekwu, P.C.; Ujah, A.; Ajima, M. Phytochemical, proximate composition, amino acid profile and characterization of Marijuana (Cannabis sativa L.). J. Phytopharm. 2014, 3, 35–43. [Google Scholar]
- Yu, L.L.; Zhou, K.K.; Parry, J. Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils: Food Chemistry. Elsevier 2005, 91, 723–729. [Google Scholar] [CrossRef]
- Chen, T.; He, J.; Zhang, J.; Li, X.; Zhang, H.; Hao, J.; Li, L. The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food Chem. 2012, 134, 1030–1037. [Google Scholar] [CrossRef]
- Radočaj, O.; Dimić, E.; Tsao, R. Effects of hemp (Cannabis sativa L.) seed oil press-cake and decaffeinated green tea leaves (Camellia sinensis) on functional characteristics of gluten-free crackers. J. Food Sci. 2014, 79, C318–C325. [Google Scholar] [CrossRef]
- Girgih, A.T.; Udenigwe, C.C.; Aluko, R.E. In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions. J. Am. Oil Chem. Soc. 2011, 88, 381–389. [Google Scholar] [CrossRef]
- Girgih, A.T.; Alashi, A.M.; He, R.; Malomo, S.A.; Raj, P.D.; Netticadan, T.; Aluko, R.E. A Novel Hemp Seed Meal Protein Hydrolysate Reduces Oxidative Stress Factors in Spontaneously Hypertensive Rats. Nutrients 2014, 6, 5652–5666. [Google Scholar] [CrossRef] [Green Version]
- Al-Taweel, A.M.; Perveen, S.; Muhammed El-Shafae, A.; Fawzy, G.A.; Malik, A.; Afza, N.; Iqbal, L.; Latif, M. Bioactive Phenolic Amides from Celtis africana. Molecules 2012, 17, 2675–2682. [Google Scholar] [CrossRef] [Green Version]
- Izzo, L.; Castaldo, L.; Narváez, A.; Graziani, G.; Gaspari, A.; Rodríguez-Carrasco, Y.; Ritieni, A. Analysis of phenolic compounds in commercial Cannabis sativa L. inflorescences using UHPLC-Q-Orbitrap HRMs. Molecules 2020, 25, 631. [Google Scholar] [CrossRef] [Green Version]
- Olatunji, O.J.; Chen, H.; Zhou, Y. Neuroprotective effect of trans-N-caffeoyltyramine from Lycium chinense against H2O2 induced cytotoxicity in PC12 cells by attenuating oxidative stress. Biomed. Pharmacother. 2017, 93, 895–902. [Google Scholar] [CrossRef]
Product Type | Method of Extraction | Method of Testing | Tested against: | Reference |
---|---|---|---|---|
HSO | Solvent extraction | Disk diffusion & Broth microdilution methods | BC, BS,ML, SA, StE, EC, CF, EF, SaE, SeM, PA | [4] |
HSO | unknown | Well diffusion | SA, EC, PA, AN, SC | [32] |
HSO & full-spectrum hemp | Cold pressed | Cold pressed seed oil soaked foil-backed acetate-based electrospun nanofibers tested for activity against SA. | SA | [41] |
Seed Oil & Whole Plant | Solvent extraction | Cup plate agar diffusion method | BS, SA,EC, PA,AN, CA | [9] |
HEO Registered Cultivars & Wild Hemp | Hydrodistillation | Disc diffusion method | SA, EF, SP,PA, SaE, YE,CA, CK, CT | [16] |
HEO | Hydrodistillation | Disc diffusion method | SA, EF, SP,PA, SaE, YE,CA, CK, CT | [30] |
HEO | Hydrodistillation | Filter paper disc diffusion assay | BS, SA, StM, EC, KP, PA, ST | [31] |
CBD Oil (Flower) | Solvent extraction | MIC | SA, StE, EC, PA | [13] |
Isolated cannabinoids THC, CBD, and CBG extracted from Flower | Solvent extraction | Well diffusion method | SA | [15] |
HLE | Solvent extraction | Agar well diffusion method | SA, EC, PA | [42] |
HLE | Solvent extraction | Disc diffusion method | SA, PA, CA, AN | [43] |
Product Type | Method of Extraction | Antimicrobial Activity (mm) | Reference |
---|---|---|---|
Unrefined HSO | Solvent extraction (Methanol) | 2.3–3.3, 0.3–3.0 | [4] |
HSO | Cold pressed | 85.7–90.7% | [41] |
HSO | Solvent extraction (Ethanol) | 21, 28, 15, 16, n/a | [9] |
HEO | Hydrodistillation | 2–11, 1–12, 1–9 | [16] |
HEO | Hydrodistillation | 2.50–7.17, 1–8.33, 3–13.8 | [30] |
HEO | Hydrodistillation | 4–11, n/a–7 | [31] |
CBD Oil | Solvent extraction (Ethanol) | 1–4 MICμg/mL, n/a | [13] |
THC, CBD, and CBG | Solvent extraction (Acetone) | 0.5–2 MICμg/mL | [15] |
HLE | Solvent extraction (Ethanol) | 10. 3, 22.2, 25.3 | [42] |
HLE | Solvent extraction (Methanol (M)) (Acetone (A)) | A: 12, 16, 20 M: 10, 14, 20 A: 10, 10, 18 M: 11, 11, 18 A: 20, 25, 35 M: 25, 37, 40 n/a * | [43] |
N | Zone of Growth Inhibition (mm) | Reference | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BC | BS | ML | SA | CF | EF | EC | SaE | SeM | PA | CA | AN | SC | ||
1 | 2.3/0 | 2.3/0 | 3.3/2.7 | 3/3 | 2.3/0 | 2.3/2.7 | 0.3/0 | 3/0 | 2.7/0.7 | 1.7/2.3 | [4] | |||
2 | n/a | n/a | 5 * | 5 * | [32] | |||||||||
3 | 85.7–90.7% | [41] | ||||||||||||
4 | 21 | 28 25 MIC | 15 50 MIC | 16 50 MIC | n/a | n/a | [9] |
BS | SA | StM | EF | SP | EC | SaE | KP | PA | ST | YE | CA | CK | CT | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 2–11 | 2–8 | 3–10 | 2–11 | 3–8 | 1–10 | 3–9 | 1–8 | 2–7 | [16] | |||||
6 | 3.25–6.58 | 2.84–7.17 | 2.5–7.17 | 4.33–8.33 | 1.67–4.17 | 1–8.17 | 3.83–9.17 | 3–12 | 4.83–13.8 | [30] | |||||
7 | 4 | 10 | 9 | n/a | n/a | n/a | 7 | [31] |
SA | SE | EC | PA | CA | AN | Reference | |
---|---|---|---|---|---|---|---|
8 | 1, 2–4 MIC | 2–2 MIC | n/a | n/a | [13] | ||
9 | 0.5–2 MIC | [15] | |||||
10 | 10.2 | 22.2 | 25.3 | [42] | |||
11 | 10–20 | 10–18 | 20–40 | n/a | [43] |
Hemp Type | Origin | In Vivo/ In Vitro | Control | Radical Scavenging Activity against DPPH (Control) | Radical Scavenging Activity against DPPH | Reference |
---|---|---|---|---|---|---|
HSO | Romania | In vitro | Sunflower seeds | 0.47 μmol Trolox/mg sample | 0.04 μmol Trolox/mg sample | [20] |
HSO | Turkey | In vitro | Laurel Oil Stinging nettle | 85.79 mg Trolox/100 g oil 46.0 mg Trolox/100 g oil | 62.37 mg Trolox/100 g oil | [10] |
HSO | Los Angeles USA | In vitro | a-tocopherol ascorbic acid | 86.3% DPPH 94.7% DPPH | 45% DPPH | [66] |
HSO, HSOP, WDPP | Italy | In vivo | Male Wistar rat fed with a standard diet | 14.89–36.45% DPPH | 5.57–31.39% DPPH | [5] |
HSH, HSK | China | In vitro | Water | HSH: 2.21/1.09 DPPH IC50 mg/mL HSK: 2.15/4.55 DPPH IC50 mg/mL | HSH: 0.58/1.01 DPPH IC50 mg/mL HSK: 0.09/0.11 DPPH IC50 mg/mL | [67] |
HSF | Canada | In vitro | Tea leaf and Rice flour crackers | 40.22 DPPH (μmol TE/g d.w.) | 7.47 DPPH (μmol TE/g d.w.) | [68] |
HPH | Canada | In vitro | GSH | 28% | HPH: 3% | [69] |
HPH | Canada | In vitro | GSH | 55% | HPH: 52% | [70] |
In vivo | SHR fed with casein-only diet | TAC: 0.145 mM/mL SOD: 81% CAT: 58% TPx (abs): 0.6 | Trial 1, Trial 2, Trial 3 TAC: 0.2, 0.03, 0.21 mM/mL SOD: 90%, 87%, 98% CAT: 70%, 62%, 98% TPx (abs): 0.42, 0.49, 0.5 | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostapczuk, K.; Apori, S.O.; Estrada, G.; Tian, F. Hemp Growth Factors and Extraction Methods Effect on Antimicrobial Activity of Hemp Seed Oil: A Systematic Review. Separations 2021, 8, 183. https://doi.org/10.3390/separations8100183
Ostapczuk K, Apori SO, Estrada G, Tian F. Hemp Growth Factors and Extraction Methods Effect on Antimicrobial Activity of Hemp Seed Oil: A Systematic Review. Separations. 2021; 8(10):183. https://doi.org/10.3390/separations8100183
Chicago/Turabian StyleOstapczuk, Klaudia, Samuel Obeng Apori, Giovani Estrada, and Furong Tian. 2021. "Hemp Growth Factors and Extraction Methods Effect on Antimicrobial Activity of Hemp Seed Oil: A Systematic Review" Separations 8, no. 10: 183. https://doi.org/10.3390/separations8100183
APA StyleOstapczuk, K., Apori, S. O., Estrada, G., & Tian, F. (2021). Hemp Growth Factors and Extraction Methods Effect on Antimicrobial Activity of Hemp Seed Oil: A Systematic Review. Separations, 8(10), 183. https://doi.org/10.3390/separations8100183