High-Performance Thin-Layer Chromatography for Rutin, Chlorogenic Acid, Caffeic Acid, Ursolic Acid, and Stigmasterol Analysis in Periploca aphylla Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. PA Extracts and Phytochemical Isolation
2.3. Standards, Solvents, and Stock Preparation
2.4. Apparatus
2.5. HPTLCconditions
2.6. Biological Studies
2.6.1. PPARα and PPARγ Agonistic Activity
2.6.2. Assay for Inducible Nitric Oxide Synthase Inhibition
2.6.3. Reporter Gene Assay for NF-κB Activity Inhibition
2.6.4. Cytotoxicity Assay
2.7. Statistical Analysis
3. Results
3.1. Method Development
3.2. Method Validation
3.3. Application of Validated HPTLC Methods for Quantitative Analysis of Rutin, Chlorogenic Acid, Caffeic Acid, Ursolic Acid, and Stigmasterol in Butanol and Chloroform PA Extracts
3.4. Biological Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fabio, F.; Luigi, G. Herbal Medicine Today: Clinical and Research Issues. Evid. Based Complementary Altern. Med. 2007, 4, 37–40. [Google Scholar]
- Mohammed, M. Herbal Medicine in Healthcare-An Overview. Nat. Prod. Commun. 2012, 7, 807–812. [Google Scholar]
- Huang, M.; Shen, S.; Luo, C.; Ren, Y. Genus Periploca (Apocynaceae): A review of its classification, phytochemistry, biological activities and toxicology. Molecules 2019, 24, 2749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, N.; Khan, A.; Fatima, U.; Akram, M.N.; Al-Musayeib, N.; Al-Massarani, S.; El-Gamal, A.; Gilani, A.H. Presence of laxative and antidiarrheal activities in Periploca aphylla: A Saudi medicinal plant. Int. J. Pharmacol. 2013, 9, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, G.; Anis, E.; Ahmed, S. Lupene-type triterpenes from Periploca Aphylla. J. Nat. Prod. 2000, 63, 881–883. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Menichini, F.; Statti, G.A. Biological and pharmacological activities of iridoids: Recent developments. Mini-Rev. Med. Chem. 2008, 8, 399–420. [Google Scholar] [CrossRef] [PubMed]
- Ashish, K.S.; Rajesh, K.; Anurag, M.; Rajiv, G. Problems associated with clinical trials of Ayurvedic medicines. Braz. J. Pharmacogn. 2010, 20, 276–281. [Google Scholar]
- Parvez, M.K.; Alam, P.; Arbab, A.H.; Al-Dosari, M.S.; Alhowiriny, T.A.; Alqasoumi, S.I. Analysis of antioxidative and antiviral biomarkers β-amyrin, β-sitosterol, lupeol, ursolic acid in Guiera senegalensis leaves extract by validated HPTLC methods. Saudi Pharm. J. 2018, 26, 685–693. [Google Scholar] [CrossRef]
- Raha, O.; Nasir, S.; Perwez, A.; Tawfeq, A.; Areej, A.; Sami, A.; Najwa, M.; Rsshad, M.; Shabana, I.K.; Shagufta, P. Quantitative and biological analysis of iridoid glycoside & ursolic acid in aerial parts of Nepeta deflersiana by validated HPTLC method. Evid. Based Complementary Altern. Med. 2018, 2018, 1–11. [Google Scholar]
- Mariia, S.; Izabela, J.; Ewa, M.; Natalia, S.; Volodymyr, S.; Piotr, P.W. Development of high-performance thin layer chromatography method for identification of phenolic compounds and quantification of rosmarinic acid content in some species of the Lamiaceae family. J. Pharm. Bioallied Sci. 2020, 12, 139–145. [Google Scholar]
- Fawzy, G.A.; Al-Taweel, A.M.; Perveen, S.; Khan, S.I.; Al-Omary, F.A. Bioactivity and chemical characterization of Acalypha fruticosa growing in Saudi Arabia. Saudi Pharm. J. 2017, 25, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Taweel, A.M.A.; Shafae, A.M.E.; Perveen, S.; Fawzy, G.A.; Khan, S.I. Anti-Inflammatory and cytotoxic constituents of Bauhina retusa. Int. J. Pharmacol. 2015, 11, 372–376. [Google Scholar] [CrossRef] [Green Version]
- Alam, P.; Siddiqui, N.; Al-Rehaily, A.; Alajmi, A.; Basudan, O.; Khan, T. Stability indicating densitometric HPTLC method for quantitive analysis of biomarker naringin in the leaves and stems of Rumex vesicarius L. J. Planar Chromatogr. 2014, 20, 204–209. [Google Scholar] [CrossRef]
- Borenfreund, E.; Babich, H.; Martin-Alguacil, N. Rapid chemosensitivity assay with human normal and tumor cells in vitro. Vitr. Cell. Dev. Biol. 1990, 26, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, L.; Skąpska, S.; Marszałek, K. Ursolic acid: A pen-tacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 2019, 20, 9721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, N.; Chaudhary, J.; Jain, A.; Kishore, L. Stigmasterol: A comprehensive review. IJPSR 2011, 2, 2259. [Google Scholar]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J. Med. Plants Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Wang, Y.; He, Z.; Deng, S. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and reperfusion injury. Drug Des. Dev. Ther. 2016, 10, 1663–1674. [Google Scholar] [CrossRef] [Green Version]
- Elekofehinti, O.O. In silico Studies on Plant Derived Rutin as Potent Agonist of Peroxisome Proliferator-activated Receptor Gamma (PPARγ). Br. J. Med. Med Res. 2016, 14, 1–8. [Google Scholar] [CrossRef]
- Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.M.; Heiss, H.E.; et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem. Pharmacol. 2014, 92, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Grzelczyk, J.; Budryn, G.; Pérez‑Sánchez, H. Evaluation of affinity of bioactive isolates from various coffee extracts through binding with PPAR‑γ with the use of isothermal titration calorimetry and docking simulation to prevent antidiabetic effects. J. Therm. Anal. Calorim. 2020, 142, 877–887. [Google Scholar] [CrossRef]
- Peng, S.G.; Pang, Y.L.; Zhu, Q.; Kang, J.H.; Liu, M.X.; Wang, Z. Chlorogenic acid functions as a novel agonist of PPARγ2 during the differentiation of mouse 3T3-L1 Preadipocytes. Biomed Res. Int. 2018, 2018, 8594767. [Google Scholar] [CrossRef] [PubMed]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxidative Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef] [PubMed]
- Tomac, I.; Šeruga, M.; Labuda, J. Evaluation of antioxidant activity of chlorogenic acids and coffee extracts by an electrochemical DNA-based biosensor. Food Chem. 2020, 325, 126787. [Google Scholar] [CrossRef]
- Chang, M.; Liu, C.; Shieh, D.; Chen, C. Evaluation and analysis of phytochemical antioxidant capacity. Res. Artic. Biomed. Res. 2017, 28, 6431–6434. [Google Scholar]
- Velmani, G.; Vivekananda, M.; Subhash, C.M. HPTLC evaluation of oleanolic acid and ursolic acid from the methanol extract of Wattakaka volubilis. J. Acute Dis. 2014, 3, 59–61. [Google Scholar]
- Deepti, R.; Sushila, R.; Permender, R.; Aakash, D.; Sheetal, A.; Dharmender, R. HPTLC densitometric quantification of stigmasterol and lupeol from Ficus religiosa. Arab. J. Chem. 2015, 8, 366–371. [Google Scholar]
- Anjoo, K.; Ajay, K.S. Development of validated HPTLC method for quantification of stigmasterol from leaf and stem of Bryophyllum pinnatum. Arab. J. Chem. 2017, 10, S2644–S2650. [Google Scholar]
- Abhijit, D.; Devendra, K.P. HPTLC Method for Quantitative Evaluation of Seasonal Variation of stigmasterol in Rauvolfia serpentina (L). Benth. ex Kurz. J. Biol. Act. Prod. Nat. 2014, 4, 254–261. [Google Scholar]
- Savita, C.; Boonyadist, V. Simultaneous HPTLC quantification of three caffeoylquinic acids in Pluchea indica leaves and their commercial products in Thailand. Rev. Bras. Farmacogn. 2017, 2017, 177–181. [Google Scholar]
- Beata, P.; Adam, T.; Marta, K.; Małgorzata, K. Comparison of Phenolic Compound Separations by HPTLC and PPEC with SDS as the Mobile Phase Component. J. Anal. Methods Chem. 2019, 2019, 1–15. [Google Scholar]
Parameters | Method I | Method II | |||
---|---|---|---|---|---|
Rutin | Caffeic Acid | Chlorogenic Acid | Ursolic Acid | Stigmasterol | |
Linearity range (ng/spot) | 100–800 | 100–800 | 100–800 | 100–800 | 100–800 |
Regression equation | Y = 4.27X + 320.01 | Y = 21.13X + 6538.26 | Y = 26.51X + 854.12 | Y = 3.272X + 241.02 | Y = 5.153X + 285.72 |
Correlation (r2) coefficient | 0.9945 ± 0.002 | 0.9927 ± 0.0013 | 0.9939 ± 0.0012 | 0.9944 ± 0.0001 | 0.9926 ± 0.0021 |
Slope ± SD | 4.27 ± 0.018 | 21.13 ± 1.58 | 26.51 ± 1.399 | 3.272 ± 0.023 | 5.153 ± 0.045 |
Intercept ± SD | 320.01 ± 10.89 | 6538.26 ± 50.19 | 854.12 ± 38.07 | 241.02 ± 12.76 | 285.72 ± 10.447 |
Standard error of the slope | 0.007 | 0.085 | 0.057 | 0.009 | 0.018 |
Standard error of intercept | 4.449 | 20.48 | 15.541 | 5.206 | 4.264 |
Rf | 0.09 ± 0.001 | 0.25 ± 0.004 | 0.39 ± 0.003 | 0.20 ± 0.003 | 0.48 ± 0.004 |
LOD (ng) | 14.39 | 32.56 | 17.41 | 22.94 | 28.51 |
LOQ (ng) | 43.62 | 98.67 | 52.78 | 69.52 | 86.41 |
Method I | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Standard Added to Analyte (%) | Theoretical Concentration of Standard (ng/spot) | Rutin | Caffeic Acid | Chlorogenic Acid | ||||||
Concentration Found (ng/spot) ± SD | %RSD | %Recovery | Concentration Found (ng/spot) ± SD | %RSD | %Recovery | Concentration Found (ng/spot) ± SD | %RSD | %Recovery | ||
0 | 200 | 199.93 ± 7.29 | 4.16 | 99.96 | 196.17 ± 7.61 | 3.88 | 98.08 | 194.52 ± 6.57 | 3.38 | 97.26 |
50 | 300 | 295.61 ± 9.19 | 3.10 | 98.53 | 289.01 ± 11.29 | 3.91 | 96.33 | 287.41 ± 8.97 | 3.12 | 95.81 |
100 | 400 | 386.67 ± 14.23 | 3.68 | 96.66 | 392.32 ± 14.73 | 3.75 | 98.18 | 389.33 ± 13.41 | 3.44 | 97.33 |
150 | 500 | 486.96 ± 16.27 | 3.34 | 97.39 | 482.77 ± 13.37 | 2.77 | 96.55 | 484.58 ± 17.81 | 3.68 | 96.91 |
Method II | |||||||
---|---|---|---|---|---|---|---|
Standard Added to Analyte (%) | Theoretical Concentration of Standard (ng/spot) | Ursolic Acid | Stigmasterol | ||||
Concentration Found (ng/spot) ± SD | %RSD | %Recovery | Concentration Found (ng/spot) ± SD | %RSD | %Recovery | ||
0 | 200 | 197.11 ± 7.08 | 3.56 | 98.56 | 195.63 ± 7.25 | 2.96 | 97.81 |
50 | 300 | 293.26 ± 10.97 | 3.74 | 97.75 | 289.72 ± 9.67 | 3.95 | 96.57 |
100 | 400 | 390.52 ± 11.63 | 2.98 | 97.63 | 388.06 ± 11.89 | 4.85 | 97.01 |
150 | 500 | 495.36 ± 14.92 | 3.01 | 99.07 | 487.41 ± 10.51 | 4.28 | 97.48 |
Method I | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration of Standard Added (ng/spot) | Rutin | Caffeic Acid | Chlorogenic Acid | |||||||||
Intraday Precision | Interday Precision | Intraday Precision | Interday Precision | Intraday Precision | Interday Precision | |||||||
Average Concentration Found ± SD | %RSD | Average Concentration Found ± SD | %RSD | Average Concentration Found ± SD | %RSD | Average Concentration Found ± SD | %RSD | Average Concentration Found ± SD | %RSD | Average Concentration Found ± SD | %RSD | |
200 | 195.20 ± 7.29 | 3.73 | 192.86 ± 7.49 | 3.88 | 195.52 ± 8.26 | 4.22 | 192.30 ± 8.01 | 4.16 | 194.43 ± 7.21 | 3.71 | 190.66 ± 7.05 | 3.69 |
300 | 293.42 ± 8.19 | 2.79 | 288.96 ± 8.01 | 2.77 | 291.68 ± 11.58 | 3.96 | 288.84 ± 11.13 | 3.85 | 291.66 ± 9.81 | 3.36 | 287.89 ± 9.89 | 3.43 |
400 | 387.24 ± 9.37 | 2.41 | 382.55 ± 9.43 | 2.46 | 389.01 ± 14.29 | 3.67 | 385.70 ± 13.91 | 3.61 | 394.20 ± 17.74 | 3.23 | 386.59 ± 12.31 | 3.18 |
Method II | ||||||||
---|---|---|---|---|---|---|---|---|
Concentration of Standard Added (ng/spot) | Ursolic Acid | Stigmasterol | ||||||
Intraday Precision | Interday Precision | Intraday Precision | Interday Precision | |||||
Average Concentration Found ± SD | %RSD | Average Concentration Found ± SD | %RSD | Average Concentration Found ± SD | %RSD | Average Concentration Found ± SD | %RSD | |
200 | 196.63 ± 6.58 | 3.34 | 192.65 ± 6.79 | 3.52 | 197.30 ± 6.77 | 3.43 | 193.42 ± 6.89 | 3.56 |
300 | 294.17 ± 11.19 | 3.80 | 288.06 ± 11.03 | 3.83 | 294.22 ± 11.38 | 3.87 | 289.17 ± 11.03 | 3.81 |
400 | 391.29 ± 12.73 | 3.25 | 385.18 ± 12.65 | 3.28 | 392.32 ± 13.31 | 3.39 | 387.28 ± 12.91 | 3.33 |
Method I | ||||||
---|---|---|---|---|---|---|
Optimization Condition | Rutin | Caffeic Acid | Chlorogenic Acid | |||
SD | %RSD | SD | %RSD | SD | %RSD | |
Mobile phase composition; (water: methanol) | ||||||
a (6:4) | 9.45 | 2.36 | 11.68 | 2.98 | 14.13 | 3.63 |
(5.8:4.2) | 9.21 | 2.32 | 11.93 | 3.04 | 14.59 | 3.70 |
(6.2:3.8) | 9.87 | 2.51 | 12.17 | 3.09 | 14.87 | 3.76 |
Mobile phase volume (for saturation) | ||||||
(18 mL) | 9.71 | 2.44 | 10.54 | 2.69 | 14.03 | 3.64 |
(20 mL) | 9.54 | 2.41 | 10.89 | 2.77 | 14.09 | 3.65 |
(22 mL) | 9.91 | 2.51 | 10.23 | 2.61 | 14.07 | 3.64 |
Duration of saturation | ||||||
(10 min) | 8.92 | 2.24 | 13.09 | 3.34 | 14.41 | 3.68 |
(20 min) | 8.57 | 2.16 | 12.18 | 3.11 | 14.47 | 3.69 |
(30 min) | 8.73 | 2.20 | 12.01 | 3.06 | 14.58 | 3.71 |
Method II | ||||
---|---|---|---|---|
Optimization Condition | Ursolic Acid | Stigmasterol | ||
SD | %RSD | SD | %RSD | |
Mobile phase composition; (chloroform: methanol) | ||||
a (98:2) | 10.97 | 2.82 | 10.19 | 2.61 |
(97.8:2.2) | 10.51 | 2.69 | 10.27 | 2.63 |
(98.2:1.8) | 10.37 | 2.67 | 10.54 | 2.68 |
Mobile phase volume (for saturation) | ||||
(18 mL) | 10.89 | 2.82 | 9.97 | 2.56 |
(20 mL) | 10.93 | 2.82 | 9.81 | 2.53 |
(22 mL) | 10.79 | 2.78 | 9.91 | 2.54 |
Duration of saturation | ||||
(10 min) | 10.67 | 2.73 | 10.77 | 2.77 |
(20 min) | 10.51 | 2.70 | 10.83 | 2.78 |
(30 min) | 10.43 | 2.68 | 10.69 | 2.73 |
Sample Name | PPARα Fold Induction (µg/mL) | PPARγ Fold Induction (µg/mL) | Ciprofibrate (µM) | Rosiglitazone (µM) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
50 | 25 | 12.5 | 50 | 25 | 12.5 | 10 | 5 | 2.5 | 10 | 5 | 2.5 | |
P-1 | NA | NA | NA | 2.1 | 2.5 | 1.7 | 2.3 | 1.6 | 1.3 | 3.8 | 3.5 | 3.0 |
P-2 | NA | NA | NA | 1.9 | 1.7 | 1.3 | ||||||
PA-1 | NA | NA | NA | NA | NA | NA |
a Sample | % Decrease in Cellular Oxidative Stress | NF-κB Inhibition | Sp-1 Inhibition IC50 (µg/mL) | iNOS Inhibition IC50 (µg/mL) |
---|---|---|---|---|
P-1 | 47 | NA | NA | NA |
P-2 | 62 | NA | NA | NA |
PA-1 | 67 | NA | NA | NA |
b Quercetin 50 µM | 75 | - | - | - |
b Parthenolide | - | 0.8 | 6.5 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orfali, R.; Perveen, S.; Aati, H.Y.; Alam, P.; Noman, O.M.; Palacios, J.; Al-Kurbi, B.S.S.; Al-Taweel, A.M.; Khan, A.; Mehmood, R.; et al. High-Performance Thin-Layer Chromatography for Rutin, Chlorogenic Acid, Caffeic Acid, Ursolic Acid, and Stigmasterol Analysis in Periploca aphylla Extracts. Separations 2021, 8, 44. https://doi.org/10.3390/separations8040044
Orfali R, Perveen S, Aati HY, Alam P, Noman OM, Palacios J, Al-Kurbi BSS, Al-Taweel AM, Khan A, Mehmood R, et al. High-Performance Thin-Layer Chromatography for Rutin, Chlorogenic Acid, Caffeic Acid, Ursolic Acid, and Stigmasterol Analysis in Periploca aphylla Extracts. Separations. 2021; 8(4):44. https://doi.org/10.3390/separations8040044
Chicago/Turabian StyleOrfali, Raha, Shagufta Perveen, Hanan Y. Aati, Perwez Alam, Omar M. Noman, Javier Palacios, Bayan Salem S. Al-Kurbi, Areej M. Al-Taweel, Afsar Khan, Rashad Mehmood, and et al. 2021. "High-Performance Thin-Layer Chromatography for Rutin, Chlorogenic Acid, Caffeic Acid, Ursolic Acid, and Stigmasterol Analysis in Periploca aphylla Extracts" Separations 8, no. 4: 44. https://doi.org/10.3390/separations8040044
APA StyleOrfali, R., Perveen, S., Aati, H. Y., Alam, P., Noman, O. M., Palacios, J., Al-Kurbi, B. S. S., Al-Taweel, A. M., Khan, A., Mehmood, R., & Khan, S. I. (2021). High-Performance Thin-Layer Chromatography for Rutin, Chlorogenic Acid, Caffeic Acid, Ursolic Acid, and Stigmasterol Analysis in Periploca aphylla Extracts. Separations, 8(4), 44. https://doi.org/10.3390/separations8040044