Enhanced Adsorption Capacities of Fungicides Using Peanut Shell Biochar via Successive Chemical Modification with KMnO4 and KOH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of PSB and PSBOX-A
2.2.1. PSB
2.2.2. PSBOX-A
2.3. Characteristics of PSB and PSBOX-A
2.3.1. Specific Surface Area and Porosity
2.3.2. Elemental Compositions
2.3.3. Scanning Electron Microscopy Analysis
2.3.4. Fourier Transform Infrared Spectroscopy Analysis
2.4. Analytical Methods
3. Results and Discussion
3.1. Physicochemical Properties of PSB and PSBOX-A
3.2. Effects of Absorbent Dosages
3.3. Adsorption Kinetics of Fungicides
3.4. Adsorption Isotherms of Fungicides
3.5. Effects of pH on Adsorption of Fungicides
3.6. Effects of Temperature and Thermodynamic Studies
3.7. Effects of NaCl and HA on Adsorption of Fungicides
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, P.K. Toxicity of fungicides. In Veterinary Toxicology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 569–580. [Google Scholar]
- Wang, T.; Zhang, Z.; Zhang, H.; Zhong, X.; Liu, Y.; Liao, S.; Yue, X.; Zhou, G. Sorption of carbendazim on activated carbons derived from rape straw and its mechanism. RSC Adv. 2019, 9, 41745–41754. [Google Scholar] [CrossRef] [Green Version]
- Merel, S.; Benzing, S.; Gleiser, C.; di Napoli-Davis, G.; Zwiener, C. Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water. Environ. Pollut. 2018, 239, 512–521. [Google Scholar] [CrossRef]
- Meng, Y.; Zhong, K.; Xiao, J.; Huang, Y.; Wei, Y.; Tang, L.; Chen, S.; Wu, J.; Ma, J.; Cao, Z.; et al. Exposure to pyrimethanil induces developmental toxicity and cardiotoxicity in zebrafish. Chemosphere 2020, 255, 126889. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, Q.; Sun, Q.; Coffin, S.; Gui, W.; Zhu, G. Parental exposure to tebuconazole causes thyroid endocrine disruption in zebrafish and developmental toxicity in offspring. Aquat. Toxicol. 2019, 211, 116–123. [Google Scholar] [CrossRef]
- Hgeig, A.; Novaković, M.; Mihajlović, I. Sorption of carbendazim and linuron from aqueous solutions with activated carbon produced from spent coffee grounds: Equilibrium, kinetic and thermodynamic approach. J. Environ. Sci. Health Part B 2019, 54, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Ouyang, F. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation. Appl. Surf. Sci. 2013, 268, 566–570. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Hu, B.; Yu, J.; Wang, J.; Guo, X. Graphene/Fe3O4 nanocomposite for effective removal of ten triazole fungicides from water solution: Tebuconazole as an example for investigation of the adsorption mechanism by experimental and molecular docking study. J. Taiwan Inst. Chem. Eng. 2019, 95, 635–642. [Google Scholar] [CrossRef]
- Chen, F.; Song, Z.; Nie, J.; Yu, G.; Li, Z.; Lee, M. Ionic liquid-based carbon nanotube coated magnetic nanoparticles as adsorbent for the magnetic solid phase extraction of triazole fungicides from environmental water. RSC Adv. 2016, 6, 81877–81885. [Google Scholar] [CrossRef]
- Yuan, M.; Tong, S.; Zhao, S.; Jia, C.Q. Adsorption of polycyclic aromatic hydrocarbons from water using petroleum coke-derived porous carbon. J. Hazard. Mater. 2010, 181, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Jiang, Y.-Q.; Nan, H.-Y.; Yu, Y.; Jiang, J.-N. Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: Implicit mechanism. Chemosphere 2019, 214, 846–854. [Google Scholar] [CrossRef]
- Shin, J.; Lee, Y.-G.; Lee, S.-H.; Kim, S.; Ochir, D.; Park, Y.; Kim, J.; Chon, K. Single and competitive adsorptions of micropollutants using pristine and alkali-modified biochars from spent coffee grounds. J. Hazard. Mater. 2020, 400, 123102. [Google Scholar] [CrossRef]
- Suo, F.; You, X.; Ma, Y.; Li, Y. Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism. Chemosphere 2019, 235, 918–925. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Shin, J.; Kwak, J.; Kim, S.; Son, C.; Cho, K.H.; Chon, K. Effects of NaOH Activation on Adsorptive Removal of Herbicides by Biochars Prepared from Ground Coffee Residues. Energies 2021, 14, 1297. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Xiang, Y.; Wang, P.; Zhang, J.; Zhang, F.; Wei, J.; Luo, L.; Lei, M.; Tang, L. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling. Bioresour. Technol. 2017, 245, 266–273. [Google Scholar] [CrossRef]
- Wilson, K.; Yang, H.; Seo, C.W.; Marshall, W.E. Select metal adsorption by activated carbon made from peanut shells. Bioresour. Technol. 2006, 97, 2266–2270. [Google Scholar] [CrossRef]
- Allen, S.J.; Gan, Q.; Matthews, R.; Johnson, P.A. Mass transfer processes in the adsorption of basic dyes by peanut hulls. Ind. Eng. Chem. Res. 2005, 44, 1942–1949. [Google Scholar] [CrossRef]
- Johns, M.M.; Marshall, W.E.; Toles, C.A. Agricultural by-products as granular activated carbons for adsorbing dissolved metals and organics. J. Chem. Technol. Biotechnol. 1998, 71, 131–140. [Google Scholar] [CrossRef]
- McConvey, I.F.; Woods, D.; Lewis, M.; Gan, Q.; Nancarrow, P. The Importance of Acetonitrile in the Pharmaceutical Industry and Opportunities for its Recovery from Waste. Org. Process Res. Dev. 2012, 16, 612–624. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Shen, Y.; Zhang, Z.; Ge, X.; Chen, M. Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci. Total Environ. 2019, 646, 1567–1577. [Google Scholar] [CrossRef]
- Liu, R.; Liu, G.; Yousaf, B.; Abbas, Q. Operating conditions-induced changes in product yield and characteristics during thermal-conversion of peanut shell to biochar in relation to economic analysis. J. Clean. Prod. 2018, 193, 479–490. [Google Scholar] [CrossRef]
- Bhainsa, K.C.; D’souza, S. Removal of copper ions by the filamentous fungus, Rhizopus oryzae from aqueous solution. Bioresour. Technol. 2008, 99, 3829–3835. [Google Scholar] [CrossRef]
- Gorgievski, M.; Božić, D.; Stanković, V.; Štrbac, N.; Šerbula, S. Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw. Ecol. Eng. 2013, 58, 113–122. [Google Scholar] [CrossRef]
- Hayati, B.; Mahmoodi, N.M. Modification of activated carbon by the alkaline treatment to remove the dyes from wastewater: Mechanism, isotherm and kinetic. Desalination Water Treat. 2012, 47, 322–333. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Guo, J.; Li, Y.; Zhang, H.; Zhu, J.; Xie, X. Enhanced adsorption of ciprofloxacin by KOH modified biochar derived from potato stems and leaves. Water Sci. Technol. 2018, 77, 1127–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Ma, X.; Yuan, L.; Zhou, D. Comparison of adsorption behavior studies of Cd2+ by vermicompost biochar and KMnO4-modified vermicompost biochar. J. Environ. Manag. 2020, 256, 109959. [Google Scholar] [CrossRef] [PubMed]
- Bian, S.; Xu, S.; Yin, Z.; Liu, S.; Li, J.; Xu, S.; Zhang, Y. An Efficient Strategy for Enhancing the Adsorption Capabilities of Biochar via Sequential KMnO4-Promoted Oxidative Pyrolysis and H2O2 Oxidation. Sustainability 2021, 13, 2641. [Google Scholar] [CrossRef]
- Huff, M.D.; Kumar, S.; Lee, J.W. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. J. Environ. Manag. 2014, 146, 303–308. [Google Scholar] [CrossRef]
- Acemioğlu, B. Removal of a reactive dye using NaOH-activated biochar prepared from peanut shell by pyrolysis process. Int. J. Coal Prep. Util. 2019, 1–23. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.-K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef]
- Ma, J.; Li, S.; Wu, G.; Arabi, M.; Tan, F.; Guan, Y.; Li, J.; Chen, L. Preparation of magnetic metal-organic frameworks with high binding capacity for removal of two fungicides from aqueous environments. J. Ind. Eng. Chem. 2020, 90, 178–189. [Google Scholar] [CrossRef]
- Kim, E.; Jung, C.; Han, J.; Her, N.; Park, C.M.; Jang, M.; Son, A.; Yoon, Y. Sorptive removal of selected emerging contaminants using biochar in aqueous solution. J. Ind. Eng. Chem. 2016, 36, 364–371. [Google Scholar] [CrossRef]
- Shin, J.; Lee, Y.-G.; Kwak, J.; Kim, S.; Lee, S.-H.; Park, Y.; Lee, S.-D.; Chon, K. Adsorption of radioactive strontium by pristine and magnetic biochars derived from spent coffee grounds. J. Environ. Chem. Eng. 2021, 9, 105119. [Google Scholar] [CrossRef]
- Fan, S.; Tang, J.; Wang, Y.; Li, H.; Zhang, H.; Tang, J.; Wang, Z.; Li, X. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism. J. Mol. Liq. 2016, 220, 432–441. [Google Scholar] [CrossRef]
- Son, C.; An, W.; Lee, G.; Jeong, I.; Lee, Y.-G.; Chon, K. Adsorption Characteristics of Phosphate Ions by Pristine, CaCl2 and FeCl3-Activated Biochars Originated from Tangerine Peels. Separations 2021, 8, 32. [Google Scholar] [CrossRef]
- Xiao, X.; Sheng, G.D.; Qiu, Y. Improved understanding of tributyltin sorption on natural and biochar-amended sediments. Environ. Toxicol. Chem. 2011, 30, 2682–2687. [Google Scholar] [CrossRef]
- Xiang, Y.; Xu, Z.; Zhou, Y.; Wei, Y.; Long, X.; He, Y.; Zhi, D.; Yang, J.; Luo, L. A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium. Chemosphere 2019, 237, 124464. [Google Scholar] [CrossRef]
- Cano-Aguilera, I.; Haque, N.; Morrison, G.M.; Aguilera-Alvarado, A.F.; Gutiérrez, M.; Gardea-Torresdey, J.L.; de la Rosa, G. Use of hydride generation-atomic absorption spectrometry to determine the effects of hard ions, iron salts and humic substances on arsenic sorption to sorghum biomass. Microchem. J. 2005, 81, 57–60. [Google Scholar] [CrossRef]
Compounds (Abbreviation) | Formula | Structure | Molecular Weight (g mol−1) | Charge a | Log D a | pKa a | Solubility in Water b (g L−1, pH 7) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
pH 3.0 | pH 7.0 | pH 11.0 | pH 3.0 | pH 7.0 | pH 11.0 | ||||||
Carbendazim (CAR) | C9H9N3O2 | 191.19 | 1 | 0 | −1 | 0.73 | 1.80 | 1.01 | 4.28 | 0.008 | |
Pyrimethanil (PYR) | C12H13N3 | 199.25 | 1 | 0 | 0 | 1.87 | 2.43 | 2.43 | 3.44 | 0.121 | |
Tebuconazole (TEB) | C16H22ClN3O | 307.82 | 0 | 0 | 0 | 3.65 | 3.69 | 3.69 | 2.01 | 0.036 |
Properties | PSB | PSBOX-A | |
---|---|---|---|
Bulk elemental constitution (%) | C | 86.6 | 82.1 |
H | 1.6 | 1.1 | |
O | 3.7 | 4.9 | |
N | 1.7 | 1.3 | |
S | 0.1 | 0.2 | |
Ash | 6.3 | 10.5 | |
Atomic ratio | H/C | 0.2 | 0.1 |
O/C | 0.03 | 0.04 | |
N/C | 0.02 | 0.01 | |
Specific surface area (m2 g−1) | 93.9 | 1977.6 | |
Total pore volume (cm3 g−1) | 0.04 | 0.12 | |
Average pore size (nm) | 3.8 | 3.4 |
Absorbents | Compounds | Qe,exp (μmol g−1) | Pseudo-Fist-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|---|
Qe,cal (μmol g−1) | k1 (1 h−1) | R2 | Qe,cal (μmol g−1) | k2 (g μmol−1·h) | R2 | |||
PSB | CAR | 15.1 ± 0.1 | 6.1 ± 0.3 | 0.2 ± 0.04 | 0.976 | 15.4 ± 0.1 | 0.09 ± 0.01 | 0.999 |
PYR | 6.1 ± 0.1 | 2.1 ± 0.3 | 0.1 ± 0.02 | 0.915 | 6.7 ± 0.05 | 0.08 ± 0.01 | 0.999 | |
TEB | 11.6 ± 0.2 | 5.4 ± 0.6 | 0.1 ± 0.03 | 0.882 | 10.1 ± 0.1 | 0.2 ± 0.005 | 0.999 | |
PSBOX-A | CAR | 196.9 ± 0.2 | 81.9 ± 1.1 | 0.3 ± 0.03 | 0.983 | 202.0 ± 0.07 | 0.008 ± 0.004 | 0.999 |
PYR | 179.7 ± 0.06 | 81.4 ± 1.3 | 0.2 ± 0.02 | 0.982 | 184.9 ± 1.0 | 0.007 ± 0.003 | 0.999 | |
TEB | 186.2 ± 0.2 | 88.3 ± 2.2 | 0.2 ± 0.05 | 0.985 | 192.0 ± 1.6 | 0.007 ± 0.002 | 0.999 |
Absorbents | Compounds | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
Qmax (μmol g−1) | KL (L μmol−1) | R2 | n | KF (μmol1−(1/n) L1/n g−1) | R2 | ||
PSB | CAR | 92.6 ± 1.3 | 0.02 ± 0.004 | 0.999 | 1.4 ± 0.03 | 3.1 ± 0.03 | 0.995 |
PYR | 61.7 ± 2.2 | 0.03 ± 0.001 | 0.998 | 1.5 ± 0.04 | 2.9 ± 0.01 | 0.990 | |
TEB | 66.7 ± 0.5 | 0.03 ± 0.002 | 0.996 | 1.5 ± 0.02 | 3.0 ± 0.05 | 0.988 | |
PSBOX-A | CAR | 531.2 ± 1.9 | 1.2 ± 0.1 | 0.997 | 4.9 ± 0.07 | 288.9 ± 0.7 | 0.764 |
PYR | 467.7 ± 1.2 | 0.8 ± 0.05 | 0.999 | 3.9 ± 0.03 | 214.9 ± 0.8 | 0.800 | |
TEB | 495.1 ± 2.5 | 0.9 ± 0.3 | 0.999 | 4.1 ± 0.04 | 239.1 ± 0.6 | 0.826 |
Adsorbents | Fungicides | Temperature (K) | Thermodynamic Parameters | ||
---|---|---|---|---|---|
∆G° (kJ mol−1) | ΔH° (kJ mol−1) | ΔS° (J mol−1 K) | |||
PSB | CAR | 288 | –16.6 ± 0.4 | 0.003 ± 0.04 | 0.048 ± 0.003 |
298 | –18.3 ± 0.1 | ||||
308 | –19.5 ± 0.1 | ||||
PYR | 288 | –12.8 ± 0.1 | 0.002 ± 0.0003 | 0.037 ± 0.001 | |
298 | –15.2 ± 0.2 | ||||
308 | –16.7 ± 0.1 | ||||
TEB | 288 | –15.2 ± 0.1 | 0.002 ± 0.0004 | 0.045 ± 0.005 | |
298 | –17.0 ± 0.2 | ||||
308 | –18.1 ± 0.2 | ||||
PSBOX-A | CAR | 288 | –31.9 ± 0.1 | 0.003 ± 0.0005 | 0.063 ± 0.002 |
298 | –33.5 ± 0.2 | ||||
308 | –35.8 ± 0.3 | ||||
PYR | 288 | –28.7 ± 0.3 | 0.005 ± 0.0007 | 0.090 ± 0.011 | |
298 | –30.1 ± 0.9 | ||||
308 | –31.6 ± 0.2 | ||||
TEB | 288 | –30.0 ± 0.9 | 0.005 ± 0.0006 | 0.096 ± 0.013 | |
298 | –31.5 ± 0.2 | ||||
308 | –33.0 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-G.; Shin, J.; Kwak, J.; Kim, S.; Son, C.; Kim, G.-Y.; Lee, C.-H.; Chon, K. Enhanced Adsorption Capacities of Fungicides Using Peanut Shell Biochar via Successive Chemical Modification with KMnO4 and KOH. Separations 2021, 8, 52. https://doi.org/10.3390/separations8040052
Lee Y-G, Shin J, Kwak J, Kim S, Son C, Kim G-Y, Lee C-H, Chon K. Enhanced Adsorption Capacities of Fungicides Using Peanut Shell Biochar via Successive Chemical Modification with KMnO4 and KOH. Separations. 2021; 8(4):52. https://doi.org/10.3390/separations8040052
Chicago/Turabian StyleLee, Yong-Gu, Jaegwan Shin, Jinwoo Kwak, Sangwon Kim, Changgil Son, Geon-Youb Kim, Chang-Ha Lee, and Kangmin Chon. 2021. "Enhanced Adsorption Capacities of Fungicides Using Peanut Shell Biochar via Successive Chemical Modification with KMnO4 and KOH" Separations 8, no. 4: 52. https://doi.org/10.3390/separations8040052
APA StyleLee, Y. -G., Shin, J., Kwak, J., Kim, S., Son, C., Kim, G. -Y., Lee, C. -H., & Chon, K. (2021). Enhanced Adsorption Capacities of Fungicides Using Peanut Shell Biochar via Successive Chemical Modification with KMnO4 and KOH. Separations, 8(4), 52. https://doi.org/10.3390/separations8040052