Analytical Methods for Extraction and Identification of Primary and Secondary Metabolites of Apple (Malus domestica) Fruits: A Review
Abstract
:1. Introduction
2. Apple Metabolites Analysis
3. Primary Metabolites: Extraction and Analysis
3.1. Sugars
3.2. Fatty Acids
4. Secondary Metabolites
4.1. Extraction
Class | Extraction Technique | Solvents | References |
---|---|---|---|
Phenolics | Microwave-assisted extraction Solid–liquid extraction Ultrasound-assisted extraction Accelerated solvent extraction Supercritical fluid extraction |
| [61,65,67,68,69,70,71,72] |
Organic acids | Ultrasound-assisted extraction |
| [42,55,73,74] |
Carotenoids | Solid–liquid extraction |
| [32,53] |
Terpenes | Solid-phase microextraction Stir bar sorption extraction Ultrasound-assisted extraction |
| [56,57,76,80] |
4.2. Analytical Methods
4.2.1. Spectrophotometric Assays
4.2.2. Chromatographic Methods
Phenolics and Organic Acids
Carotenoids
Terpenes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bevilacqua, M.; Bro, R.; Marini, F.; Rinnan, Å.; Rasmussen, M.A.; Skov, T. Recent chemometrics advances for foodomics. TrAC Trends Anal. Chem. 2017, 96, 42–51. [Google Scholar] [CrossRef]
- Herrero, M.; Simò, C.; Garcia-Canasa, V.; Ibanez, E.; Cifuentes, A. Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom. Rev. 2012, 31, 49–69. [Google Scholar] [CrossRef] [Green Version]
- Giordani, E.; Doumett, S.; Nin, S.; Del Bubba, M. Selected primary and secondary metabolites in fresh persimmon (Diospyros kaki Thunb.): A review of analytical methods and current knowledge of fruit composition and health benefits. Food Res. Int. 2011, 44, 1752–1767. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products-A review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Huber, G.M.; Rupasinghe, H.P.V. Phenolic profiles and antioxidant properties of apple skin extracts. J. Food Sci. 2009, 74, 693–700. [Google Scholar] [CrossRef]
- Feliciano, R.P.; Antunes, C.; Ramos, A.; Serra, A.T.; Figueira, M.E.; Duarte, C.M.M.; de Carvalho, A.; Bronze, M.R. Characterization of traditional and exotic apple varieties from Portugal. Part 1—Nutritional, phytochemical and sensory evaluation. J. Funct. Foods 2010, 2, 35–45. [Google Scholar] [CrossRef]
- Figuerola, F.; Hurtado, M.L.; Estévez, A.M.; Chiffelle, I.; Asenjo, F. Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 2005, 91, 395–401. [Google Scholar] [CrossRef]
- Mohanta, S.; Singh, S.K.; Kumar, B.; Gulati, M.; Jyoti, J.; Som, S.; Panchal, S.; Melkani, I.; Banerjee, M.; Sinha, S.K.; et al. Solidification of liquid Modified Apple Polysaccharide by its adsorption on solid porous carriers through spray drying and evaluation of its potential as binding agent for tablets. Int. J. Biol. Macromol. 2018, 120, 1975–1998. [Google Scholar] [CrossRef]
- Ajanaku, C.; Echeme, J.; Mordi, R.; Bolade, O.; Okoye, S.; Jonathan, H.; Ejilude, O. In-vitro antibacterial, phytochemical, antimycobacterial activities and GC-MS analyses of Bidens pilosa leaf extract. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 721–725. [Google Scholar] [CrossRef] [Green Version]
- Vieira, F.G.K.; Borges, G.D.S.C.; Copetti, C.; Amboni, R.D.D.M.C.; Denardi, F.; Fett, R. Physico-chemical and antioxidant properties of six apple cultivars (Malus domestica Borkh) grown in southern Brazil. Sci. Hortic. 2009, 122, 421–425. [Google Scholar] [CrossRef]
- Perry, A.; Rasmussen, H.; Johnson, E.J. Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J. Food Compos. Anal. 2009, 22, 9–15. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Ramirez-Ambrosi, M.; Abad-Garcia, B.; Viloria-Bernal, M.; Garmon-Lobato, S.; Berrueta, L.A.; Gallo, B. A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in ap. J. Chromatogr. A 2013, 1316, 78–91. [Google Scholar] [CrossRef]
- Uzun, A.; Kantemiz, A.; Pinar, H. Evaluation of Yield and Fruit Quality of Some Apple. Curr. Trends Nat. Sci. 2019, 8, 36–40. [Google Scholar]
- Bonany, J.; Brugger, C.; Buehler, A.; Carbó, J.; Codarin, S.; Donati, F.; Echeverria, G.; Egger, S.; Guerra, W.; Hilaire, C.; et al. Preference mapping of apple varieties in Europe. Food Qual. Prefer. 2014, 32, 317–329. [Google Scholar] [CrossRef]
- Shippy, W.B. Influence of Environment on the Callusing of Apple Cuttings and Grafts. Am. J. Bot. 1930, 17, 290–327. [Google Scholar] [CrossRef]
- Harker, F.R.; White, A.; Gunson, F.A.; Hallett, I.C.; De Silva, H.N. Instrumental measurement of apple texture: A comparison of the single-edge notched bend test and the penetrometer. Postharvest Biol. Technol. 2006, 39, 185–192. [Google Scholar] [CrossRef]
- Francini, A.; Sebastiani, L. Phenolic compounds in apple (Malus x domestica borkh.): Compounds characterization and stability during postharvest and after processing. Antioxidants 2013, 2, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Rana, S.; Kumar, S.; Rana, A.; Sharma, V.; Katoch, P.; Padwad, Y.; Bhushan, S. Phenolic constituents from apple tree leaves and their in vitro biological activity. Ind. Crops Prod. 2016, 90, 118–125. [Google Scholar] [CrossRef]
- Petkovsek, M.M.; Stampar, F.; Veberic, R. Parameters of inner quality of the apple scab resistant and susceptible apple cultivars (Malus domestica Borkh.). Sci. Hortic. 2007, 114, 37–44. [Google Scholar] [CrossRef]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Pascale, R.; Onzo, A.; Ciriello, R.; Scrano, L.; Bufo, S.A.; Bianco, G. LC/MS Based Food Metabolomics; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780081005965. [Google Scholar]
- Fukusaki, E.; Kobayashi, A. Plant metabolomics: Potential for practical operation. J. Biosci. Bioeng. 2005, 100, 347–354. [Google Scholar] [CrossRef]
- Bekele, E.A.; Annaratone, C.E.P.; Hertog, M.L.A.T.M.; Nicolai, B.M.; Geeraerd, A.H. Multi-response optimization of the extraction and derivatization protocol of selected polar metabolites from apple fruit tissue for GC-MS analysis. Anal. Chim. Acta 2014, 824, 42–56. [Google Scholar] [CrossRef] [PubMed]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef]
- Santarsiero, A.; Onzo, A.; Pascale, R.; Acquavia, M.A.; Coviello, M.; Convertini, P.; Todisco, S.; Marsico, M.; Pifano, C.; Iannece, P.; et al. Pistacia lentiscus Hydrosol: Untargeted Metabolomic Analysis and Anti-Inflammatory Activity Mediated by NF- κ B and the Citrate Pathway. Oxid. Med. Cell. Longev. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Onzo, A.; Pascale, R.; Acquavia, M.A.; Cosma, P.; Gubitosa, J.; Gaeta, C.; Iannece, P.; Tsybin, Y.; Rizzi, V.; Guerrieri, A.; et al. Untargeted analysis of pure snail slime and snail slime-induced Au nanoparticles metabolome with MALDI FT-ICR MS. J. Mass Spectrom. 2021, 56. [Google Scholar] [CrossRef] [PubMed]
- Arnous, A.; Meyer, A.S. Comparison of methods for compositional characterization of grape (Vitis vinifera L.) and apple (Malus domestica) skins. Food Bioprod. Process. 2008, 86, 79–86. [Google Scholar] [CrossRef]
- Acquavia, M.A.; Foti, L.; Pascale, R.; Nicolò, A.; Brancaleone, V.; Cataldi, T.R.I.; Martelli, G.; Scrano, L.; Bianco, G. Detection and quantification of Covid-19 antiviral drugs in biological fluids and tissues. Talanta 2021, 224. [Google Scholar] [CrossRef]
- Canarini, A.; Kaiser, C.; Merchant, A.; Richter, A.; Wanek, W. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Peace, C.; Rudell, D.; Verma, S.; Evans, K. QTLs detected for individual sugars and soluble solids content in apple. Mol. Breed. 2015, 35, 1–13. [Google Scholar] [CrossRef]
- Karkacier, M.; Erbas, M.; Uslu, M.K.; Aksu, M. Comparison of different extraction and detection methods for sugars using amino-bonded phase HPLC. J. Chromatogr. Sci. 2003, 41, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Sun, Z.; Chen, C.; Zhang, L.; Zhu, S. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chem. 2014, 145, 784–788. [Google Scholar] [CrossRef]
- Filip, M.; Vlassa, M.; Coman, V.; Halmagyi, A. Simultaneous determination of glucose, fructose, sucrose and sorbitol in the leaf and fruit peel of different apple cultivars by the HPLC-RI optimized method. Food Chem. 2016, 199, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, P.; Cheng, L. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in “Honeycrisp” apple flesh. Food Chem. 2010, 123, 1013–1018. [Google Scholar] [CrossRef]
- Yang, S.; Meng, Z.; Li, Y.; Chen, R.; Yang, Y.; Zhao, Z. Evaluation of Physiological Characteristics, Soluble Sugars, Organic Acids and Volatile Compounds in “Orin” Apples (Malus domestica) at Different Ripening Stages. Molecules 2021, 26, 807. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ying, Y.; Yu, H.; Fu, X. Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits. J. Agric. Food Chem. 2006, 54, 2810–2815. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-d.; Ying, Y. Bin Measurement of sugar content in Fuji apples by FT-NIR spectroscopy. J. Zhejiang Univ. Sci. 2004, 5, 651–655. [Google Scholar] [CrossRef] [Green Version]
- Arain, S.; Sherazi, S.T.H.; Bhanger, M.I.; Memon, N.; Mahesar, S.A.; Rajput, M.T. Prospects of fatty acid profile and bioactive composition from lipid seeds for the discrimination of apple varieties with the application of chemometrics. Grasas y Aceites 2012, 63, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Baeza-Jiménez, R.; López-Martínez, L.X.; García-Varela, R.; García, H.S. Lipids in fruits and vegetables: Chemistry and biological activities. Fruit Veg. Phytochem. Chem. Hum. Health Second Ed. 2017, 1, 423–449. [Google Scholar] [CrossRef]
- Song, J.; Bangerth, F. Fatty acids as precursors for aroma volatile biosynthesis in pre-climacteric and climacteric apple fruit. Postharvest Biol. Technol. 2003, 30, 113–121. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical compositional characterization of some apple cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Chiu, H.H.; Kuo, C.H. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. J. Food Drug Anal. 2020, 28, 60–73. [Google Scholar] [CrossRef]
- Duroňová, K.; Márová, I.; Čertík, M.; Obruča, S. Changes in lipid composition of apple surface layer during long-term storage in controlled atmosphere. Chem. Pap. 2012, 66, 940–948. [Google Scholar] [CrossRef]
- Walia, M.; Rawat, K.; Bhushan, S.; Padwad, Y.S.; Singh, B. Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace. J. Sci. Food Agric. 2014, 94, 929–934. [Google Scholar] [CrossRef]
- Radenkovs, V.; Kviesis, J.; Juhnevica-Radenkova, K.; Valdovska, A.; Püssa, T.; Klavins, M.; Drudze, I. Valorization of wild apple (Malus spp.) by-products as a source of essential fatty acids, tocopherols and phytosterols with antimicrobial activity. Plants 2018, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Seppanen-Laakso, T.; Laakso, I.; Hiltunen, R. Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition. Anal. Chim. Acta 2002, 465, 39–62. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Laskowski, P. Polyphenolic compounds and antioxidant activity of new and old apple varieties. J. Agric. Food Chem. 2008, 56, 6520–6530. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Barranco, A.; Abad, B.; Berrueta, L.A.; Gallo, B.; Vicente, F. Polyphenolic Profiles of Basque Cider Apple Cultivars and Their Technological Properties. J. Agric. Food Chem. 2004, 52, 2938–2952. [Google Scholar] [CrossRef] [PubMed]
- Vanzani, P.; Rossetto, M.; Rigo, A.; Vrhovsek, U.; Mattivi, F.; D’Amato, E.; Scarpa, A.M. Major phytochemicals in apple cultivars: Contribution to peroxyl radical trapping efficiency. J. Agric. Food Chem. 2005, 53, 3377–3382. [Google Scholar] [CrossRef] [PubMed]
- Łata, B.; Trampczynska, A.; Paczesna, J. Cultivar variation in apple peel and whole fruit phenolic composition. Sci. Hortic. 2009, 121, 176–181. [Google Scholar] [CrossRef]
- Ampomah-Dwamena, C.; Deinoprat, S.; Lewis, D.; Sutherland, P.; Volz, R.; Allan, A.C. Metabolic and gene expression analysis of apple (Malus × domestica) carotenogenesis. J. Exp. Bot. 2012, 63, 4497–4511. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of Sugars, Organic Acids, and Total Phenolics in 25 Wild or Cultivated Berry Species. J. Food Sci. 2012, 77, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Yuan, Y.; Gao, M.; Li, C.; Ogutu, C.; Li, M.; Ma, F. Determination of predominant organic acid components in malus species: Correlation with apple domestication. Metabolites 2018, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuizen, N.J.; Green, S.A.; Chen, X.; Bailleul, E.J.D.; Matich, A.J.; Wang, M.Y.; Atkinson, R.G. Functional Genomics Reveals That a Compact Terpene Synthase Gene Family Can Account for Terpene Volatile Production in Apple. Plant Physiol. 2020, 161, 787–804. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.; Perestrelo, R.; Caldeira, M.; Câmara, J.S. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS. J. Sep. Sci. 2009, 32, 1875–1888. [Google Scholar] [CrossRef] [Green Version]
- Mehinagic, E.; Prost, C.; Demaimay, M. Optimization of extraction of apple aroma by dynamic headspace and influence of saliva on extraction of volatiles. J. Agric. Food Chem. 2004, 52, 5175–5182. [Google Scholar] [CrossRef]
- Sut, S.; Poloniato, G.; Malagoli, M.; Dall’acqua, S. Fragmentation of the main triterpene acids of apple by LC- APCI-MSn. J. Mass Spectrom. 2018, 53, 882–892. [Google Scholar] [CrossRef]
- Mehinagic, E.; Prost, C.; Demaimay, M. Representativeness of Apple Aroma Extract Obtained by Vacuum Hydrodistillation: Comparison of Two Concentration Techniques. J. Food Sci. 2003, 68, 2411–2415. [Google Scholar] [CrossRef]
- Rezaei, S.; Rezaei, K.; Haghighi, M.; Labbafi, M. Solvent and Solvent to Sample Ratio as Main Parameters in the Microwave-assisted Extraction of Polyphenolic Compounds from Apple Pomace. Food Sci. Biotechnol. 2013, 22, 1269–1274. [Google Scholar] [CrossRef]
- Rowan, D.D. Volatile metabolites. Metabolites 2011, 1, 41–63. [Google Scholar] [CrossRef] [Green Version]
- Müller, E.; Berger, R.; Blass, E.; Sluyts, D.; Pfennig, A. Liquid-liquid Extraction. Encicl. Ind. Chem. 2000, 21, 250–303. [Google Scholar] [CrossRef]
- Naboulsi, I.; Aboulmouhajir, A. Plants extracts and secondary metabolites, their extraction methods and use in agriculture for controlling crop stresses and improving productivity: A review. Acad. J. Med. Plants 2018, 6, 223–240. [Google Scholar] [CrossRef]
- Bai, X.L.; Yue, T.L.; Yuan, Y.H.; Zhang, H.W. Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J. Sep. Sci. 2010, 33, 3751–3758. [Google Scholar] [CrossRef]
- Eskilsson, C.S.; Bjorklund, E. Analytcal-scale microwave-assisted extrcation. J. Chromatogr. A 2000, 902, 227–250. [Google Scholar] [CrossRef]
- Sanoner, P.; Guyot, S.; Marnet, N.; Molle, D.; Drilleau, J.F. Polyphenol profiles of French cider apple varieties (Malus domestica sp.). J. Agric. Food Chem. 1999, 47, 4847–4853. [Google Scholar] [CrossRef] [PubMed]
- Guyot, S.; Marnet, N.; Laraba, D.; Sanoner, P.; Drilleau, J.F. Reversed-Phase HPLC following Thiolysis for Quantitative Estimation and Characterization of the Four Main Classes of Phenolic Compounds in Different Tissue Zones of a French Cider Apple Variety (Malus domestica Var. Kermerrien). J. Agric. Food Chem. 1998, 46, 1698–1705. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Korta, E.; Barranco, A.; Berrueta, L.A.; Gallo, B.; Vicente, F. Determination of polyphenolic profiles of Basque cider apple varieties using accelerated solvent extraction. J. Agric. Food Chem. 2001, 49, 3761–3767. [Google Scholar] [CrossRef] [PubMed]
- Ferrentino, G.; Morozova, K.; Mosibo, O.K.; Ramezani, M.; Scampicchio, M. Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. J. Clean. Prod. 2018, 186, 253–261. [Google Scholar] [CrossRef]
- Stefova, M.; Petkovska, A.; Ugarkovic, S.; Stanoeva, J.P. Strategy for optimized use of LC-MSn for determination of the polyphenolic profiles of apple peel, flesh and leaves. Arab. J. Chem. 2019, 12, 5180–5186. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.S.; Le Bourvellec, C.; Renard, C.M.G.C.; Chemat, F. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J. Food Eng. 2012, 111, 73–81. [Google Scholar] [CrossRef]
- Bizjak, J.; Weber, N.; Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Alam, Z.; Stich, K.; Halbwirth, H.; Veberic, R. Influence of phostrade Ca on color development and anthocyanin content of “Braeburn” apple (Malus domestica Borkh.). HortScience 2013, 48, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.; Li, M.; Ma, F.; Cheng, L. Effects of location within the tree canopy on carbohydrates, organic acids, amino acids and phenolic compounds in the fruit peel and flesh from three apple (Malus 3 domestica) cultivars. Hortic. Res. 2014, 1, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Bernaldo de Quirós, A.; Costa, H.S. Analysis of carotenoids in vegetable and plasma samples: A review. J. Food Compos. Anal. 2006, 19, 97–111. [Google Scholar] [CrossRef]
- Fan, J.; Liao, D.; Zhang, X. Ultrasonic assisted extraction of ursolic acid from apple pomace: A novel and facile technique. Sep. Sci. Technol. 2016, 6395, 1344–1350. [Google Scholar] [CrossRef]
- Prosen, H.; Zupančič-Kralj, L. Solid-phase microextraction. TrAC Trends Anal. Chem. 1999, 18, 272–282. [Google Scholar] [CrossRef]
- Bianco, G.; Novario, G.; Zianni, R.; Cataldi, T.R.I. Comparison of two SPME fibers for the extraction of some off-flavor cork-taint compounds in bottled wines investigated by GC-HRMS. Anal. Bioanal. Chem. 2009, 393, 2019–2027. [Google Scholar] [CrossRef]
- Schmutzer, G.R.; Magdas, A.D.; David, L.I.; Moldovan, Z. Determination of the Volatile Components of Apple Juice Using Solid Phase Microextraction and Gas Chromatography-Mass Spectrometry. Anal. Lett. 2014, 47, 1683–1696. [Google Scholar] [CrossRef]
- Risticevic, S.; Souza-Silva, E.A.; Gionfriddo, E.; DeEll, J.R.; Cochran, J.; Hopkins, W.S.; Pawliszyn, J. Application of in vivo solid phase microextraction (SPME) in capturing metabolome of apple (Malus ×domestica Borkh.) fruit. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sbse-gc-ms, S.; Rodr, R. Determination of Volatile Compounds in Apple Pomace by Stir Bar Sorptive Extraction and Gas Chromatography-Mass. J. Food Sci. 2011, 76, C1326–C1334. [Google Scholar] [CrossRef]
- Caivano, M.; Pascale, R.; Mazzone, G.; Masi, S.; Panariello, S.; Caniani, D. Disinfection unit of water resource recovery facilities: Critical issue for N2O Emission. In Frontiers in Wastewater Treatment and Modelling; Mannina, G., Ed.; Springer: Milano, Italy, 2017; pp. 444–449. ISBN 978-3-319-58421-8. [Google Scholar]
- Caivano, M.; Pascale, R.; Mazzone, G.; Buchicchio, A.; Masi, S.; Bianco, G.; Caniani, D. N2O and CO2 Emissions from secondary settlers in WWTPs: Experimental results on full and pilot scale plants. In Frontiers in Wastewater Treatment and Modelling; Mannina, G., Ed.; Springer: Milano, Italy, 2017; pp. 412–418. [Google Scholar]
- Caniani, D.; Esposito, G.; Gori, R.; Caretti, C.; Bellandi, G.; Mancini, I.M.; Caivano, M.; Pascale, R.; Cosenza, A.; Abouissa, H.; et al. Toward a New Plant-Wide Experimental and Modeling Approach for Reduction of Greenhouse Gas Emission from Wastewater Treatment Plants. J. Environ. Eng. 2019, 145, 1–12. [Google Scholar] [CrossRef]
- Caniani, D.; Caivano, M.; Pascale, R.; Bianco, G.; Mancini, I.M.; Masi, S.; Mazzone, G.; Firouzian, M.; Rosso, D. CO2 and N2O from water resource recovery facilities: Evaluation of emissions from biological treatment, settling, disinfection, and receiving water body. Sci. Total Environ. 2019, 648, 1130–1140. [Google Scholar] [CrossRef]
- Acquavia, M.A.; Pascale, R.; Martelli, G.; Bondoni, M.; Bianco, G. Natural polymeric materials: A solution to plastic pollution from the agro-food sector. Polymers 2021, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Harnafi, H.; Amrani, S. Spectrophotometric Methods for Determination of Plant Polyphenols Content and their Antioxidant Activity Assessment: An Overview. Mol. Nutr. Food Res. 2008, 2, 20–22. [Google Scholar]
- Vrhovsek, U.; Rigo, A.; Tonon, D.; Mattivi, F. Quantitation of polyphenols in different apple varieties. J. Agric. Food Chem. 2004, 52, 6532–6538. [Google Scholar] [CrossRef]
- Mitić, S.S.; Stojanović, B.T.; Stojković, M.B.; Mitić, M.N.; Pavlović, J.L. Total phenolics, flavonoids and antioxidant activity of different apple cultivars. Bulg. Chem. Commun. 2013, 45, 326–331. [Google Scholar]
- Bastola, K.P.; Guragain, Y.N.; Bhadriraju, V.; Vadlani, P.V. Evaluation of Standards and Interfering Compounds in the Determination of Phenolics by Folin-Ciocalteu Assay Method for Effective Bioprocessing of Biomass. Am. J. Anal. Chem. 2017, 8, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Lucci, P.; Saurina, J.; Núñez, O. Trends in LC-MS and LC-HRMS analysis and characterization of polyphenols in food. TrAC Trends Anal. Chem. 2017, 88, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Pascale, R.; Acquavia, M.A.; Cataldi, T.R.I.; Onzo, A.; Coviello, D.; Bufo, S.A.; Scrano, L.; Ciriello, R.; Guerrieri, A.; Bianco, G. Profiling of quercetin glycosides and acyl glycosides in sun-dried peperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI (—)-MS/MS and polarity prediction in reversed-phase separations. Anal. Bioanal. Chem. 2020, 412, 3005–3015. [Google Scholar] [CrossRef]
- Pascale, R.; Bianco, G.; Cataldi, T.R.I.; Buchicchio, A.; Losito, I.; Altieri, G.; Genovese, F.; Tauriello, A.; Di Renzo, G.C.; Lafiosca, M.C. Investigation of the Effects of Virgin Olive Oil Cleaning Systems on the Secoiridoid Aglycone Content Using High Performance Liquid Chromatography–Mass Spectrometry. J. Am. Oil Chem. Soc. 2018, 95, 665–671. [Google Scholar] [CrossRef]
- Pascale, R.; Bianco, G.; Cataldi, T.R.I.; Kopplin, P.S.; Bosco, F.; Vignola, L.; Uhl, J.; Lucio, M.; Milella, L. Mass spectrometry-based phytochemical screening for hypoglycemic activity of Fagioli di Sarconi beans (Phaseolus vulgaris L.). Food Chem. 2018, 242, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Bianco, G.; Pascale, R.; Carbone, C.F.; Acquavia, M.A.; Cataldi, T.R.I.; Schmitt-Kopplin, P.; Buchicchio, A.; Russo, D.; Milella, L. Determination of soyasaponins in Fagioli di Sarconi beans (Phaseolus vulgaris L.) by LC-ESI-FTICR-MS and evaluation of their hypoglycemic activity. Anal. Bioanal. Chem. 2018, 410, 1561–1569. [Google Scholar] [CrossRef]
- Bianco, G.; Pascale, R.; Lelario, F.; Bufo, S.A.; Cataldi, T.R.I. Investigation of Glucosinolates by Mass Spectrometry. In Glucosinolates; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 431–461. ISBN 978-3-319-25462-3. [Google Scholar]
- Ventura, G.; Calvano, C.D.; Losito, I.; Bianco, G.; Pascale, R.; Palmisano, F.; Cataldi, T.R.I. Effect of pH and mobile phase additives on the chromatographic behaviour of an amide-embedded stationary phase: Cyanocobalamin and its diaminemonochloro-platinum(II) conjugate as a case study. J. Sep. Sci. 2019, 42, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Pascale, R.; Bianco, G.; Coviello, D.; Cristina Lafiosca, M.; Masi, S.; Mancini, I.M.; Bufo, S.A.; Scrano, L.; Caniani, D. Validation of a liquid chromatography coupled with tandem mass spectrometry method for the determination of drugs in wastewater using a three-phase solvent system. J. Sep. Sci. 2020, 43, 886–895. [Google Scholar] [CrossRef]
- Natale, A.; Nardiello, D.; Palermo, C.; Muscarella, M.; Quinto, M.; Centonze, D. Development of an analytical method for the determination of polyphenolic compounds in vegetable origin samples by liquid chromatography and pulsed amperometric detection at a glassy carbon electrode. J. Chromatogr. A 2015, 1420, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Dordevic, B.; Durovic, D.; Zec, G.; Radovic, A.; Vulic, T. Bio-chemical properties and susceptibility to fire blight (Erwinia amylovora Burrill) of scab-resistant apple cultivars (Malus domestica Borkh.). Folia Hortic. 2019, 31, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Petkovska, A.; Gjamovski, V.; Stanoeva, J.P.; Stefova, M. Characterization of the polyphenolic profiles of peel, flesh and leaves of Malus domestica cultivars using UHPLC-DAD-HESI-MSn. Nat. Prod. Commun. 2017, 12, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Marks, S.C.; Mullen, W.; Crozier, A. Flavonoid and chlorogenic acid profiles of English cider apples. J. Sci. Food Agric. 2007, 87, 719–728. [Google Scholar] [CrossRef]
- Jakobek, L.; García-Villalba, R.; Tomás-Barberán, F.A. Polyphenolic characterisation of old local apple varieties from Southeastern European region. J. Food Compos. Anal. 2013, 31, 199–211. [Google Scholar] [CrossRef]
- De Paepe, D.; Servaes, K.; Noten, B.; Diels, L.; De Loose, M.; Van Droogenbroeck, B.; Voorspoels, S. An improved mass spectrometric method for identification and quantification of phenolic compounds in apple fruits. Food Chem. 2013, 136, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; Moreira, I.; Arnaez, E.; Quesada, S.; Azofeifa, G.; Vargas, F.; Alvarado, D.; Chen, P. Polyphenolic characterization and antioxidant activity of malus domestica and prunus domestica cultivars from Costa Rica. Foods 2018, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Raudone, L.; Raudonis, R.; Liaudanskas, M.; Viskelis, J.; Pukalskas, A.; Janulis, V. Phenolic Profiles and Contribution of Individual Compounds to Antioxidant Activity of Apple Powders. J. Food Sci. 2016, 81, C1055–C1061. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Wojdyło, A.; Kolniak, J. Effect of pectinase treatment on extraction of antioxidant phenols from pomace, for the production of puree-enriched cloudy apple juices. Food Chem. 2011, 127, 623–631. [Google Scholar] [CrossRef] [PubMed]
- López-fernández, O.; Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Rocchetti, G.; Lorenzo, J.M. Determination of polyphenols using liquid chromatography–tandem mass spectrometry technique (LC–MS/MS): A review. Antioxidants 2020, 9, 479. [Google Scholar] [CrossRef]
- Serni, E.; Venir, E.; Romano, G.; Guerra, W.; Robatscher, P. Determination of Major Phenolics Content in Dried Apples from Three New Cultivars (Malus domestica Borkh.) Using HPLC-UV-FL with Pentafluorophenyl Stationary Phase. Food Anal. Methods 2020, 13, 863–871. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J. Antioxidant activity modulated by polyphenol contents in apple and leaves during fruit development and ripening. Antioxidants 2020, 9, 567. [Google Scholar] [CrossRef]
- Wollgast, J.; Anklam, E. Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res. Int. 2000, 33, 423–447. [Google Scholar] [CrossRef]
- Hollands, W.J.; Voorspoels, S.; Jacobs, G.; Aaby, K.; Meisland, A.; Garcia-Villalba, R.; Tomas-Barberan, F.; Piskula, M.K.; Mawson, D.; Vovk, I.; et al. Development, validation and evaluation of an analytical method for the determination of monomeric and oligomeric procyanidins in apple extracts. J. Chromatogr. A 2017, 1495, 46–56. [Google Scholar] [CrossRef]
- Bernal, J.; Ares, A.M.; Pól, J.; Wiedmer, S.K. Hydrophilic interaction liquid chromatography in food analysis. J. Chromatogr. A 2011, 1218, 7438–7452. [Google Scholar] [CrossRef]
- Veberic, R.; Schmitzer, V.; Petkovsek, M.M.; Stampar, F. Impact of Shelf Life on Content of Primary and Secondary Metabolites in Apple (Malus domestica Borkh.). J. Food Sci. 2010, 75, 461–468. [Google Scholar] [CrossRef]
- Blake, J.D.; Clarke, M.L.; Richards, G.N. Determination of organic acids in sugar cane process juice by high-performance liquid chromatography: Improved resolution using dual aminex HPX-87H cation-exchange columns equilibrated to different temperatures. J. Chromatogr. A 1987, 398, 265–277. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Viškelis, P.; Jakštas, V.; Raudonis, R.; Kviklys, D.; Milašius, A.; Janulis, V. Application of an optimized HPLC method for the detection of various phenolic compounds in apples from Lithuanian cultivars. J. Chem. 2014, 2014. [Google Scholar] [CrossRef]
- Sowa, A.; Zgórka, G.; Szykuba, A.; Franiczek, R.; Gbikowska, B.; Gamian, A.; Sroka, Z. Analysis of polyphenolic compounds in extracts from leaves of some malus domestica cultivars: Antiradical and antimicrobial analysis of these extracts. BioMed Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Le Bourvellec, C.; Bouzerzour, K.; Ginies, C.; Regis, S.; Plé, Y.; Renard, C.M.G.C. Phenolic and polysaccharidic composition of applesauce is close to that of apple flesh. J. Food Compos. Anal. 2011, 24, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Le Bourvellec, C.; Bureau, S.; Renard, C.M.G.C.; Plenet, D.; Gautier, H.; Touloumet, L.; Girard, T.; Simon, S. Cultivar and year rather than agricultural practices affect primary and secondary metabolites in apple fruit. PLoS ONE 2015, 10, e0141916. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Q.; You, Y.; Chen, W.; Xiao, Z.; Li, P.; Ma, F. Characterization of quercetin and its glycoside derivatives in Malus germplasm. Hortic. Environ. Biotechnol. 2018, 59, 909–917. [Google Scholar] [CrossRef]
- Mato, I.; Suárez-Luque, S.; Huidobro, J.F. A review of the analytical methods to determine organic acids in grape juices and wines. Food Res. Int. 2005, 38, 1175–1188. [Google Scholar] [CrossRef]
- Pascale, R.; Bianco, G.; Calace, S.; Masi, S.; Mancini, I.M.; Mazzone, G.; Caniani, D. Method development and optimization for the determination of benzene, toluene, ethylbenzene and xylenes in water at trace levels by static headspace extraction coupled to gas chromatography–barrier ionization discharge detection. J. Chromatogr. A 2018, 1548, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Onzo, A.; Acquavia, M.A.; Cataldi, T.R.I.; Ligonzo, M.; Coviello, D.; Pascale, R.; Martelli, G.; Bondoni, M.; Scrano, L.; Bianco, G. Coceth sulfate characterization by electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, 1–10. [Google Scholar] [CrossRef]
- Lelario, F.; De Maria, S.; Rivelli, A.R.; Russo, D.; Milella, L.; Bufo, S.A.; Scrano, L. LC-FTICR-MS and IRMPD in a Commercial Variety and and their Anticholinesterase and Antioxidant Activities. Toxins 2019, 11, 230. [Google Scholar] [CrossRef] [Green Version]
- Lelario, F.; Labella, C.; Napolitano, G.; Scrano, L.; Bufo, S.A. Fragmentation study of major spirosolane-type glycoalkaloids by collision-induced dissociation linear ion trap and infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 2395–2406. [Google Scholar] [CrossRef]
- Šavikin, K.; Živković, J.; Zdunić, G.; Godevac, D.; Dordević, B.; Dojčinović, B.; Dordević, N. Phenolic and mineral profiles of four Balkan indigenous apple cultivars monitored at two different maturity stages. J. Food Compos. Anal. 2014, 35, 101–111. [Google Scholar] [CrossRef]
- Verdu, C.F.; Gatto, J.; Freuze, I.; Richomme, P.; Laurens, F.; Guilet, D. Comparison of two methods, UHPLC-UV and UHPLC-MS/MS, for the quantification of polyphenols in cider apple juices. Molecules 2013, 18, 10213–10227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolniak-Ostek, J.; Oszmiański, J.; Wojdyło, A. Effect of l-ascorbic acid addition on quality, polyphenolic compounds and antioxidant capacity of cloudy apple juices. Eur. Food Res. Technol. 2013, 236, 777–798. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Chan, B.L.S.; Mitchell, A.E. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS). Food Chem. 2017, 215, 301–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, S.F.; Rai, D.K.; Abu-Ghannam, N. Water at room temperature as a solvent for the extraction of apple pomace phenolic compounds. Food Chem. 2012, 135, 1991–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malec, M.; Le Quéré, J.M.; Sotin, H.; Kolodziejczyk, K.; Bauduin, R.; Guyot, S. Polyphenol profiling of a red-fleshed apple cultivar and evaluation of the color extractability and stability in the juice. J. Agric. Food Chem. 2014, 62, 6944–6954. [Google Scholar] [CrossRef]
- Giomaro, G.; Karioti, A.; Bilia, A.R.; Bucchini, A.; Giamperi, L.; Ricci, D.; Fraternale, D. Polyphenols profile and antioxidant activity of skin and pulp of a rare apple from Marche region (Italy). Chem. Cent. J. 2014, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso-Salces, R.M.; Ndjoko, K.; Queiroz, E.F.; Ioset, J.R.; Hostettmann, K.; Berrueta, L.A.; Gallo, B.; Vicente, F. On-line characterisation of apple polyphenols by liquid chromatography coupled with mass spectrometry and ultraviolet absorbance detection. J. Chromatogr. A 2004, 1046, 89–100. [Google Scholar] [CrossRef]
- Denis, M.C.; Furtos, A.; Dudonné, S.; Montoudis, A.; Garofalo, C.; Desjardins, Y.; Delvin, E.; Levy, E. Apple Peel Polyphenols and Their Beneficial Actions on Oxidative Stress and Inflammation. PLoS ONE 2013, 8, e53725. [Google Scholar] [CrossRef]
- Todea, D.; Cadar, O.; Simedru, D.; Roman, C.; Tanaselia, C.; Suatean, I.; Naghiu, A. Determination of major-to-trace minerals and polyphenols in different apple cultivars. Not. Bot. Horti Agrobot. Cluj Napoca 2014, 42, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Bizjak, J.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Changes in primary metabolites and polyphenols in the peel of “braeburn” Apples (Malus domestica Borkh.) during advanced maturation. J. Agric. Food Chem. 2013, 61, 10283–10292. [Google Scholar] [CrossRef]
- De Bernonville, T.D.; Gaucher, M.; Guyot, S.; Durel, C.E.; Dat, J.F.; Brisset, M.N. The constitutive phenolic composition of two Malus×domestica genotypes is not responsible for their contrasted susceptibilities to fire blight. Environ. Exp. Bot. 2011, 74, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Arathi, B.P.; Sowmya, P.R.R.; Vijay, K.; Baskaran, V.; Lakshminarayana, R. Metabolomics of carotenoids: The challenges and prospects—A review. Trends Food Sci. Technol. 2015, 45, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Res. Int. 2014, 65, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Fromm, M.; Bayha, S.; Kammerer, D.R.; Carle, R. Identification and quantitation of carotenoids and tocopherols in seed oils recovered from different rosaceae species. J. Agric. Food Chem. 2012, 60, 10733–10742. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from Fruits and Vegetables: Chemistry, Analysis, Occurrence, Bioavailability and Biological Activities; Elsevier: Amsterdam, The Netherlands, 2015; Volume 76, ISBN 8224503739. [Google Scholar]
- Delpino-Rius, A.; Eras, J.; Marsol-Vall, A.; Vilaró, F.; Balcells, M.; Canela-Garayoa, R. Ultra performance liquid chromatography analysis to study the changes in the carotenoid profile of commercial monovarietal fruit juices. J. Chromatogr. A 2014, 1331, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Cargnin, S.T.; Gnoatto, S.B. Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Food Chem. 2016, 220, 477–489. [Google Scholar] [CrossRef]
- Song, J.; Gardner, B.D.; Holland, J.F.; Beaudry, R.M. Rapid Analysis of Volatile Flavor Compounds in Apple Fruit Using SPME and GC/Time-of-Flight Mass Spectrometry. J. Agric. Food Chem. 1997, 45, 1801–1807. [Google Scholar] [CrossRef]
- Januszek, M.; Satora, P. Oenological Characteristics of Fermented Apple Musts and Volatile Profile of Brandies Obtained from Di ff erent Apple Cultivars. Biomolecules 2020, 10, 853. [Google Scholar] [CrossRef]
- Giannetti, V.; Boccacci Mariani, M.; Mannino, P.; Marini, F. Volatile fraction analysis by HS-SPME/GC-MS and chemometric modeling for traceability of apples cultivated in the Northeast Italy. Food Control 2017, 78, 215–221. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Lotti, C.; Masuero, D.; Carlin, S.; Weingart, G.; Mattivi, F. Quantitative metabolic profiling of grape, apple and raspberry volatile compounds (VOCs) using a GC/MS/MS method. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 966, 132–139. [Google Scholar] [CrossRef]
- Wildner, A.C.; Ferreira, P.L.; Oliveira, S.S.; Gnoatto, S.B.; Bergold, A.M. Variation of ursolic and betulinic acid in five Malus × domestica clones from Southern Brazil. J. Appl. Pharm. Sci. 2018, 8, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Viškelis, J.; Uselis, N.; Liaudanskas, M.; Janulis, V.; Bielicki, P.; Univer, T.; Lepsis, J.; Kviklys, D. Triterpenic acid content in the fruit peel of Malus × domestica Borkh. depends on the growing technology. Zemdirb.-Agric. 2018, 105, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene acid and phenolics from ancient apples of Friuli Venezia Giulia as nutraceutical ingredients: LC-MS study and in vitro activities. Molecules 2019, 24, 1109. [Google Scholar] [CrossRef] [Green Version]
- Butkevičiūtė, A.; Liaudanskas, M.; Kviklys, D.; Zymonė, K.; Raudonis, R.; Viškelis, J.; Uselis, N.; Janulis, V. Detection and analysis of triterpenic compounds in apple extracts. Int. J. Food Prop. 2018, 21, 1716–1727. [Google Scholar] [CrossRef] [Green Version]
- McGhie, T.K.; Hudault, S.; Lunken, R.C.M.; Christeller, J.T. Apple peels, from seven cultivars, have lipase-inhibitory activity and contain numerous ursenoic acids as identified by LC-ESI-QTOF-HRMS. J. Agric. Food Chem. 2012, 60, 482–491. [Google Scholar] [CrossRef] [PubMed]
Apple Variety | Color | Dimension | Pulp | Flavor |
---|---|---|---|---|
Renetta | Yellow, tending to the green | Medium | Soft and pasty | Acid, medium sweetened |
Golden Delicious | Gold yellow | Large | Crunchy and juicy | Very sweet |
Stark Delicious | Bright red | Large | Crunchy and juicy | Sweet, little acidic |
Granny Smith | Green | Medium | Crunchy | Acid |
Fuji | Reddish with yellow-green streaks | Large | Crunchy and juicy | Sweet, little acidic |
Pink Lady | Reddish/red | Medium | Crunchy | Sweet |
Annurca | Bright red | Small | Crunchy | Acid |
Royal Gala | Red with streaks | Small | Crunchy and juicy | Very sweet |
Kanzi | Intense red or yellow | Medium | Hard and crunchy | Medium sweet and acid |
Braeburn | Brown red | Medium–large | Crunchy | Medium sweet/acid |
Morgenduft | Red with clear patches | Medium | Hard and juicy | Sweet and slightly acid |
Extraction and Detection Methods | Recommendations | ||
---|---|---|---|
Primary Metabolites | Sugars | Extraction LSE extraction with water as solvent Analysis HPLC–RI; HPLC–ELSD |
|
Fatty acids | Extraction LSE extraction with hexane as solvent; Soxhlet extraction with petroleum ether Analysis GC–FID; GC–MS |
| |
Secondary Metabolites | Phenolics and organic acids | Extraction MAE or UAE extraction; Analysis HPLC–DAD; LC–MS/MS |
|
Carotenoids | Extraction LSE extraction Analysis HPLC–DAD; LC–MS/MS |
| |
Terpenes | Extraction SPME and SBSE extraction for volatile terpenes; UAE extraction for non-volatile triterpenoids; Analysis GC–FID; GC–MS for volatile terpenes; HPLC–DAD; LC–MS/MS for non-volatile triterpenoids |
|
Group of Polyphenols | Phenolic Compound | λmax (nm) |
---|---|---|
Flavanols | Procyanidin B1 | 281 |
(+)-Catechin | 281 | |
Procyanidin B2 | 281 | |
Procyanidin C1 | 275 | |
(−)-Epicatechin | 280 | |
Procyanidin A2 | 280 | |
Phenolic acids | Gallic acid | 272 |
Protocatechuic acid | 261, 298 | |
5-O-Caffeoylquinic acid | 326 | |
Caffeic acid | 324 | |
p-Coumaric acid | 310 | |
Ferulic acid | 324 | |
Dihydrochalcones | Phloretin-2-O-β-glucoside | 287 |
Flavonols | Quercetin-3-O-galactoside | 259, 348 |
Quercetin-3-O-glucoside | 259, 351 | |
Quercetin-3-O-rutinoside | 259, 348 | |
Quercetin-3-O-xyloside | 260, 348 | |
Quercetin-3-O-arabinoside | 260, 347 | |
Quercetin-3-O-rhamnoside | 260, 347 | |
Quercetin | 256, 372 |
Pigment | λmax (nm) | HPLC/MS (APCI+) Fragmentation Pattern m/z | |
---|---|---|---|
[M + H]+ | Characteristic Fragments | ||
all-trans-Neoxanthin | 419, 444, 472 | 601 | 583 ([M + H− 18] +), 565 ([M + H−18−18] +), 547 ([M + H−18−18−18] +) |
9′-cis-Neoxanthin | 415, 439, 468 | 601 | 583 ([M + H−18] +), 565 ([M + H−18−18] +), 547 ([M + H−18−18−18] +) |
Neochrome | 401, 424, 452 | 601 | 583 ([M + H−18] +, 565 ([M + H−18−18] +), 547 ([M + H−18−18−18] +) |
all-trans-Violaxanthin | 418, 443, 472 | 601 | 583 ([M + H−18] +), 565 ([M + H−18−18] +) |
9-cis-Violaxanthin | 411, 436, 468 | 601 | 583 ([M + H−18] +), 565 ([M + H−18−18] +) |
13-cis-Violaxanthin | 410, 435, 466 | 601 | 583 ([M + H−18] +), 565 ([M + H−18−18] +) |
Luteoxanthin | 400, 424, 451 | 601 | 583 ([M + H−18] +), 565 ([M + H−18−18] +) |
all-trans-Antheraxanthin | 424, 448, 476 | 585 | 567 ([M + H−18] +), 549 ([M + H−18−18] +), 505 ([M + H−80] +) |
all-trans-Zeaxanthin | 428, 455, 481 | 569 | 551 ([M + H−18] +),533 ([M + H−18−18] +) |
all-trans-Lutein | 428, 448, 476 | 569 | 551 ([M + H−18] +),533 ([M + H−18−18] +) |
9-cis-Lutein | 330, 420, 444, 472 | 569 | 551 ([M + H−18] +),533 ([M + H−18−18] +) |
13-cis-lutein | 334, 418, 441, 470 | 569 | 551 ([M + H−18] +),533 ([M + H−18−18] +) |
Chlorophyll b | 457, 646 | 907 | 629 ([M + H−278] +) |
Chlorophyll b′ | 457, 646 | 907 | 629 ([M + H−278] +) |
Chlorophyll a | 430, 662 | 893 | 615 ([M + H−278] +) |
Chlorophyll a′ | 430, 662 | 893 | 629 ([M + H−278] +) |
all-trans-β-Carotene | 427, 454, 479 | 537 | 445 ([M + H−92] +) |
Ion | Pomaceic Acid | Annurcoic Acid | Euscaphic Acid | Pomolic Acid | Corosolic Acid | Maslinic Acid | Betulinic Acid | Oleanolic Acid | Ursolic Acid |
---|---|---|---|---|---|---|---|---|---|
HR-MSQ-TOF | 501.3222 (Δ + 1.2 ppm for C30H45O6 501.3216) | 485.3281 (Δ + 2.9 ppm for C30H45O5 485.3267) | 487.3415 (Δ − 1.6 ppm for C30H47O5 487.3423) | 471.3474 (Δ + 0.4 ppm for C30H47O4 471.3473) | 471.3475 (Δ + 0.4 ppm for C30H47O4 471.3473) | 471.3475 (Δ + 0.6 ppm for C30H47O4 471.3473) | 455.3529 (Δ + 0.9 ppm for C30H47O3 455.3525) | 455.3522 (Δ − 0.7 ppm for C30H47O3 455.3525) | 455.3531 (Δ + 1.3 ppm for C30H47O3 455.3525) |
MS2 | |||||||||
[M-H-18]− | 483.3110 (Δ − 3.9 ppm for C30H43O5 483.3111) | 467.3170 (Δ + 0.9 ppm for C30H43O4 467.3161) | 469.3304 (Δ − 3.0 ppm for C30H45O4 469.3318) | 453.3359 (Δ − 2.2 ppm for C30H45O3 453.3369) | |||||
[M-H-40]− | 415.3181 (Δ − 7.5 ppm for C27H43O3 415.3212) | ||||||||
[M-H-44]− | 457.3303 (Δ − 3.3 ppm for C29H45O4 457.3318) | 441.3355 (Δ − 3.2 ppm for C29H45O3 441.3369) | |||||||
[M-H-46]− | 455.3160 (Δ − 0.3 ppm for C30H43O4 455.3161) | 409.3423 (Δ − 10.0 ppm for C29H45O 409.3470) | |||||||
[M-H-48]− | 423.3250 (Δ − 3.1 ppm for C29H43O2 423.3263) | 423.3253 (Δ + 2.4 ppm for C29H43O2 423.3263) | 407.3314 (Δ − 3.2 ppm for C29H43O 407.3314) | 407.3314 (Δ − 3.2 ppm for C29H43O 407.3314) | 407.3304 (Δ − 2.5 ppm for C29H43O 407.3314) | ||||
[M-H-60]− | 441.2984 (Δ − 4.8 ppm for C28H41O4 441.3005) | 411.3250 (Δ − 3.2 ppm for C28H43O2 411.3263) | |||||||
[M-H-62]− | 439.2848 (Δ + 0.9 ppm for C28H39O4 439.2848) | 423.3259 (Δ − 0.9 ppm for C29H43O2 423.3263) | 425.3420 (Δ − 5.4 ppm for C29H45O2 425.3420) | 409.3095 (Δ − 2.9 ppm for C28H41O2 409.3107) | 393.3143 (Δ − 8.5 ppm for C28H41O 393.3157) | ||||
[M-H-64]− | 407.3313 (Δ − 0.3 ppm for C29H43O 407.3314) | 407.2914 (Δ − 8.8 ppm for C28H39O2 407.2950) | 407.6 | ||||||
[M-H-66]− | 405.5 | 405.5 | |||||||
[M-H-78]− | 393.3157 (Δ − 0.1 ppm for C28H41O 393.3157) | 393.6 | 377.5 | ||||||
[M-H-80]− | 405.3149 (Δ − 2.0 ppm for C29H41O 405.3157) | 407.2934 (Δ − 3.9 ppm for C28H39O2 407.2934) | |||||||
[M-H-93]− | 409.3107 (Δ − 5.9 ppm for C28H41O2 409.3107) | 393.3157 (Δ − 1.3 ppm for C28H41O 393.3157) | |||||||
MS3 * | |||||||||
409.6→379.5 | 423.6→405.7 423.6→393.6 | 425.6→407.6 425.6→405.6 425.6→393.5 | 423.5→407.5 423.5→405.5 423.5→393.5 | 407.6→391.6 407.6→377.6 407.6→365.4 407.6→363.4 | 407.6→391.5 407.6→378.5 407.6→377.5 407.6→206.6 | ||||
MS4 ** | |||||||||
379.5→363.8 379.5→361.8 379.5→190.3 379.5→137.3 | 393.6→377.6 393.6→189.3 | 393.5→377.5 393.5→189.3 | 393.5→377.6 393.5→375.5 393.5→202.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acquavia, M.A.; Pascale, R.; Foti, L.; Carlucci, G.; Scrano, L.; Martelli, G.; Brienza, M.; Coviello, D.; Bianco, G.; Lelario, F. Analytical Methods for Extraction and Identification of Primary and Secondary Metabolites of Apple (Malus domestica) Fruits: A Review. Separations 2021, 8, 91. https://doi.org/10.3390/separations8070091
Acquavia MA, Pascale R, Foti L, Carlucci G, Scrano L, Martelli G, Brienza M, Coviello D, Bianco G, Lelario F. Analytical Methods for Extraction and Identification of Primary and Secondary Metabolites of Apple (Malus domestica) Fruits: A Review. Separations. 2021; 8(7):91. https://doi.org/10.3390/separations8070091
Chicago/Turabian StyleAcquavia, Maria Assunta, Raffaella Pascale, Luca Foti, Giuseppe Carlucci, Laura Scrano, Giuseppe Martelli, Monica Brienza, Donatella Coviello, Giuliana Bianco, and Filomena Lelario. 2021. "Analytical Methods for Extraction and Identification of Primary and Secondary Metabolites of Apple (Malus domestica) Fruits: A Review" Separations 8, no. 7: 91. https://doi.org/10.3390/separations8070091
APA StyleAcquavia, M. A., Pascale, R., Foti, L., Carlucci, G., Scrano, L., Martelli, G., Brienza, M., Coviello, D., Bianco, G., & Lelario, F. (2021). Analytical Methods for Extraction and Identification of Primary and Secondary Metabolites of Apple (Malus domestica) Fruits: A Review. Separations, 8(7), 91. https://doi.org/10.3390/separations8070091