Application of Nanofiltration Membrane Based on Metal-Organic Frameworks (MOFs) in the Separation of Magnesium and Lithium from Salt Lakes
Abstract
:1. Introduction
2. Metal-Organic Frameworks (MOFs)
2.1. MOFs Classification
2.2. Preparation of MOFs Film
2.3. Separation Mechanisms of MOFs Membrane
3. Application of MOFs Nanofiltration Membrane in Salt Lake
3.1. Technology Review on Lithium Extraction Method from Salt Lake
3.2. Current Status of MOF NF Membranes in Brine Applications
4. Discussion
5. Conclusions
5.1. Conclusions
5.2. Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Sun, Y.; Yun, R.; Zang, Y.; Pu, M.; Xiang, X. Highly efficient lithium recovery from pre-synthesized chlorine-ion-intercalated LiAl-layered double hydroxides via a mild solution chemistry process. Materials 2019, 12, 1968. [Google Scholar] [CrossRef] [Green Version]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Hoshino, T. Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination 2015, 359, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Razmjou, A.; Asadnia, M.; Hosseini, E.; Habibnejad, K.A.; Chen, V. Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taheri, R.; Razmjou, A.; Szekely, G.; Hou, J.; Ghezelbash, G.R. Biodesalination—On harnessing the potential of nature’s desalination processes. Bioinspir. Biomim. 2016, 11, 041001. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ma, Z.; Qian, B.; Chan, A.Y.; Wang, X.; Liu, Y.; Xin, J.H. A facile and scalable method of fabrication of large-area ultrathin graphene oxide nanofiltration membrane. ACS Nano 2021, 15, 15294–15305. [Google Scholar] [CrossRef]
- Sarkar, P.; Modak, S.; Karan, S. Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration. Adv. Funct. Mater. 2021, 31, 2007054. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Rana, D.; Lan, C.Q.; Matsuura, T. Effects of inorganic nano-additives on properties and performance of polymeric membranes in water treatment. Sep. Purif. Rev. 2016, 45, 141–167. [Google Scholar] [CrossRef]
- Ji, Y.L.; Gu, B.X.; Xie, S.J.; Yin, M.J.; Qian, W.J.; Zhao, Q.; Gao, C.J. Superfast water transport zwitterionic polymeric nanofluidic membrane reinforced by metal–organic frameworks. Adv. Mater. 2021, 33, 2102292. [Google Scholar] [CrossRef]
- Rowsell, J.L.; Yaghi, O.M. Metal–organic frameworks: A new class of porous materials. Microporous Mesoporous Mat. 2004, 73, 3–14. [Google Scholar] [CrossRef]
- Batten, S.R.; Champness, N.R.; Chen, X.M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers. Pure Appl. Chem. 2013, 85, 1715–1724. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Low, Z.X.; Gore, D.B.; Kumar, R.; Asadnia, M.; Zhong, Z. Porous metal–organic framework-based filters: Synthesis methods and applications for environmental remediation. Chem. Eng. J. 2022, 430, 133160. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, H.; Hou, J.; Li, X.; Hu, X.; Hu, Y.; Wang, H. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 2020, 19, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Jiang, X.; Zhang, Y.; Lau, C.H.; Xie, Z.; Ng, D.; Shao, L. Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents. ACS Appl. Mater. Interfaces 2017, 9, 38877–38886. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.B.; Ji, Z.Y.; Liu, J.; Zhao, Y.Y.; Wang, S.Z.; Yuan, J.S. Development of recovering lithium from brines by selective-electrodialysis: Effect of coexisting cations on the migration of lithium. J. Membr. Sci. 2018, 548, 408–420. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Teppen, B.J.; Miller, D.M. Hydration energy determines isovalent cation exchange selectivity by clay minerals. Soil Sci. Soc. Am. J. 2016, 70, 31–40. [Google Scholar] [CrossRef]
- Volkov, A.G.; Paula, S.; Deamer, D.W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem. Bioenerg. 1997, 42, 153–160. [Google Scholar] [CrossRef]
- Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R.F.; Levine, L.; Bauer, J. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 2006, 51, 40–47. [Google Scholar] [CrossRef]
- Akthakul, A.; Hochbaum, A.I.; Stellacci, F.; Mayes, A.M. Size fractionation of metal nanoparticles by membrane filtration. Adv. Mater. 2005, 17, 532–535. [Google Scholar] [CrossRef]
- Hamon, L.; Llewellyn, P.L.; Devic, T.; Ghoufi, A.; Clet, G.; Guillerm, V.; Férey, G. Co-adsorption and separation of CO2−CH4 mixtures in the highly flexible MIL-53 (Cr) MOF. J. Am. Chem. Soc. 2019, 131, 17490–17499. [Google Scholar] [CrossRef] [PubMed]
- Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. nsight into crystal growth by time-resolved in situ static light scattering. Chem. Mat. 2011, 23, 2130–2141. [Google Scholar] [CrossRef]
- Xu, T.; Sheng, F.; Wu, B.; Shehzad, M.A.; Yasmin, A.; Wang, X.; Xu, T. Ti-exchanged UiO-66-NH2–containing polyamide membranes with remarkable cation permselectivity. J. Membr. Sci. 2020, 615, 118608. [Google Scholar] [CrossRef]
- Park, J.; Hinckley, A.C.; Huang, Z.; Feng, D.; Yakovenko, A.A.; Lee, M.; Bao, Z. Synthetic routes for a 2D semiconductive copper hexahydroxybenzene metal–organic framework. J. Am. Chem. Soc. 2018, 140, 14533–14537. [Google Scholar] [CrossRef]
- Luo, S.; Wang, Y.; Kan, X. Cu-THQ metal-organic frameworks: A kind of new inner reference for the reliable detection of dopamine base on ratiometric electrochemical sensing. Microchem. J. 2022, 172, 106903. [Google Scholar] [CrossRef]
- Campbell, J.; Burgal, J.D.S.; Szekely, G.; Davies, R.P.; Braddock, D.C.; Livingston, A. Hybrid polymer/MOF membranes for Organic Solvent Nanofiltration (OSN): Chemical modification and the quest for perfection. J. Membr. Sci. 2016, 503, 166–176. [Google Scholar] [CrossRef]
- Basu, S.; Maes, M.; Cano-Odena, A.; Alaerts, L.; De Vos, D.E.; Vankelecom, I.F. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks. J. Membr. Sci. 2009, 344, 190–198. [Google Scholar] [CrossRef]
- Wang, L.; Fang, M.; Liu, J.; He, J.; Deng, L.; Li, J.; Lei, J. The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water. RSC Adv. 2015, 5, 50942–50954. [Google Scholar] [CrossRef]
- Huang, T.; Puspasari, T.; Nunes, S.P.; Peinemann, K.V. Ultrathin 2D-layered cyclodextrin membranes for high-performance organic solvent nanofiltration. Adv. Funct. Mater. 2020, 30, 1906797. [Google Scholar] [CrossRef]
- Echaide-Górriz, C.; Zapata, J.A.; Etxeberría-Benavides, M.; Téllez, C.; Coronas, J. Polyamide/MOF bilayered thin film composite hollow fiber membranes with tuned MOF thickness for water nanofiltration. Sep. Purif. Technol. 2020, 236, 116265. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, J.; Lu, X.; Jiang, H.; Wang, P.; He, M.; Ma, J. Epitaxially grown MOF membranes with photocatalytic bactericidal activity for biofouling mitigation in desalination. J. Membr. Sci. 2021, 630, 119327. [Google Scholar] [CrossRef]
- Lalabadi, M.A.; Peyman, H.; Roshanfekr, H.; Azizi, S.; Maaza, M. Polyethersulfone nanofiltration membrane embedded by magnetically modified MOF (MOF@ Fe3O4): Fabrication, characterization and performance in dye removal from water using factorial design experiments. Polym. Bull. 2022, 07, 1–21. [Google Scholar] [CrossRef]
- Yao, A.; Hua, D.; Gao, Z.F.; Pan, J.; Ibrahim, A.R.; Zheng, D.; Zhan, G. Fabrication of organic solvent nanofiltration membrane using commercial PVDF substrate via interfacial polymerization on top of metal-organic frameworks interlayer. J. Membr. Sci. 2022, 652, 120465. [Google Scholar] [CrossRef]
- Li, T.; Pan, Y.; Peinemann, K.V.; Lai, Z. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Membr. Sci. 2013, 425, 235–242. [Google Scholar] [CrossRef]
- Bae, T.H.; Lee, J.S.; Qiu, W.; Koros, W.J.; Jones, C.W.; Nair, S. A high-performance gas-separation membrane containing submicrometer-sized metal–organic framework crystals. Angew. Chem. 2010, 122, 10059–10062. [Google Scholar] [CrossRef]
- Zornoza, B.; Martinez-Joaristi, A.; Serra-Crespo, P.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chem. Commun. 2011, 47, 9522–9524. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wu, H.; Duan, M.; Hao, X.; Yang, Q.; Zhang, Q.; Huang, X. Liquid-liquid extraction of lithium from aqueous solution using novel ionic liquid extractants via COSMO-RS and experiments. Fluid Phase Equilib. 2018, 459, 129–137. [Google Scholar] [CrossRef]
- Loganathan, P.; Naidu, G.; Vigneswaran, S. Mining valuable minerals from seawater: A critical review. Environ. Sci.-Wat. Res. Technol. 2017, 3, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, Y.; Wang, J.; Gascon, J.; Li, J.; Vander Bruggen, B. Metal–organic frameworks based membranes for liquid separation. Chem. Soc. Rev. 2017, 46, 7124–7144. [Google Scholar] [CrossRef]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy 2014, 150, 192–208. [Google Scholar] [CrossRef]
- Nie, X.Y.; Sun, S.Y.; Sun, Z.; Song, X.; Yu, J.G. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination 2017, 403, 128–135. [Google Scholar] [CrossRef]
- Xu, S.; Song, J.; Bi, Q.; Chen, Q.; Zhang, W.M.; Qian, Z.; He, T. Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice. J. Membr. Sci. 2021, 635, 119441. [Google Scholar] [CrossRef]
- Ordonez, M.J.C.; Balkus Jr, K.J.; Ferraris, J.P.; Musselman, I.H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 2010, 361, 28–37. [Google Scholar] [CrossRef]
- Nik, O.G.; Chen, X.Y.; Kaliaguine, S. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. J. Membr. Sci. 2012, 413, 48–61. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Li, W.; Yang, Z.; Zhang, G.; Fan, Z.; Meng, Q.; Shen, C.; Gao, C. Stiff metal–organic framework–polyacrylonitrile hollow fiber composite membranes with high gas permeability. J. Mater. Chem. A 2014, 2, 2110–2118. [Google Scholar] [CrossRef]
- Gascon, J.; Kapteijn, F. Metal-organic framework membranes—High potential, bright future? Angew. Chem. Int. Ed. 2010, 49, 1530–1532. [Google Scholar] [CrossRef]
- Puthai, W.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. SiO2-ZrO2 nanofiltration membranes of different Si/Zr molar ratios: Stability in hot water and acid/alkaline solutions. J. Mater. Chem. 2017, 524, 700–711. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Ying, Y.; Mao, Y.; Peng, X.; Chen, B. Polystyrene sulfonate threaded through a metal–organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. 2016, 128, 15344–15348. [Google Scholar] [CrossRef]
- Zhang, C.; Mu, Y.; Zhang, W.Y.; Zhao, S.; Wang, Y. PVC-based hybrid membranes containing metal-organic frameworks for Li+/Mg2+ separation. J. Membr. Sci. 2020, 596, 117724. [Google Scholar] [CrossRef]
- Du, H.Y.; Zhang, W.J.; Wen, S. Recent research of nanofiltration membrane preparation based on metal-organic frameworks(MOFs). Membr. Sci. Tech. 2022, 42, 154–162. [Google Scholar]
- Cong, S.; Yuan, Y.; Wang, J.; Wang, Z.; Kapteijn, F.; Liu, X. Highly Water-Permeable Metal–Organic Framework MOF-303 Membranes for Desalination. J. Am. Chem. Soc. 2021, 143, 20055–20058. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Demir, N.K.; Wu, Z.; Li, K. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 2015, 137, 6999–7002. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hou, J.; Hu, Y.; Wang, P.; Ou, R.; Jiang, L.; Wang, H. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 2018, 4, eaaq0066. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Chai, M.; Abdollahzadeh, M.; Ahmadi, H.; Chen, V.; Gore, D.B.; Razmjou, A. A lithium ion selective membrane synthesized from a double layered Zrbased metalorganic framework (MOF-on-MOF) thin film. Desalination 2022, 532, 115733. [Google Scholar] [CrossRef]
- Li, T.Y. Summary of Optimization Methods for Metal Organic Framework Materials. Guangzhou Chem. Ind. 2020, 48, 56–60. [Google Scholar]
- Ma, L. Fabrication of High-Performance Nanofiltration Membrane Using Polydopamine and Carbon Nitride as the Interlayer. Separations 2022, 9, 180. [Google Scholar] [CrossRef]
MOF Type | Comment | Advantage |
---|---|---|
IRMOFs | Microporous crystal materials with cubic network structure produced by connecting aromatic carboxylic acid organic ligands with inorganic ion cluster structural units. |
|
CuBTC | It is produced by the coordination reaction between copper nitrate solution and benzoic acid (BTC). It has a three-dimensional cross channel structure. |
|
MIL | It is formed by coordination of trivalent metal with organic ligands terephthalic acid and metabenzoic acid, and the pore structure is planar diamond [21]. |
|
ZIFs | It is produced by the coordination connection of metal ions and imidazole ligands, and has a cage like pore structure. |
|
UiO | It is formed by the coordination connection of octahedral secondary structural unit Zr, and has a three-dimensional hole structure. |
|
MOF | Comment |
---|---|
ZIF-8 | Zn(NO3)2·6H2O and 2-methylimidazole (Hmim) are dissolved separately in MeOH. The latter is poured into the former after stirring with a magnetic bar. Then stir well and let stand for 24 h. Next, the solid and the milky colloids are separated by washing and centrifugation with methanol, and repeated three times. Finally, dry at room temperature and low pressure [22]. |
UiO-66 | ZrCl4 and terephthalic acid are dissolved in DMF to form a crystallization mother liquor. Statically crystallize at 120 °C for 24 h. After washing and drying, add benzoic acid or acetic acid as a conditioner. UiO-66 single crystal is obtained on the conical flask wall by solvent evaporation [23]. |
Cu-THQ | Cu-THQ MOFs are synthesized by dissolving Cu(NO3)2⋅2.5H2O in degassed water and adding ethylenediamine. The above solution is then vigorously stirred and transferred to a degassed aqueous solution and stirred at room temperature for 12 h. The final centrifugation is followed by three washes with deionized water and acetone. Finally, the obtained Cu-THQ MOFs are dried in an oven at 80 °C for 24 h [24,25]. |
Preparation | Process |
---|---|
In Situ Growth (ISG) | In situ growth (ISG) refers to immersing the polyvinyl support film into nanoparticles and then pouring it into the mixed solution of organic phase monomer or water phase monomer. |
Blending | There are two preparation methods: the first is to directly mix the MOFs particles with the polymer matrix through L-S phase inversion; the second is to mix the MOFs particles with a cross-linking agent (modified polymer). |
Interfacial Polymerization | Refers to immersing the polyvinyl support film into the mixed solution of nanoparticles and organic phase monomer or aqueous phase monomer [29]. |
Phase Inversion | Refers to the mass transfer of solvent and non-solvent in the homogeneous polymer solution in the surrounding environment and changing the thermodynamic state of the solution by a particular physical method. |
Method | Type | Advantage | Disadvantage |
---|---|---|---|
Extraction method |
|
|
|
Adsorption method |
|
|
|
Reaction/separation coupling |
|
| |
Membrane method |
|
|
|
Electrochemical method |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhu, R.; Srinivasakannan, C.; Li, T.; Li, S.; Yin, S.; Zhang, L. Application of Nanofiltration Membrane Based on Metal-Organic Frameworks (MOFs) in the Separation of Magnesium and Lithium from Salt Lakes. Separations 2022, 9, 344. https://doi.org/10.3390/separations9110344
Liu Y, Zhu R, Srinivasakannan C, Li T, Li S, Yin S, Zhang L. Application of Nanofiltration Membrane Based on Metal-Organic Frameworks (MOFs) in the Separation of Magnesium and Lithium from Salt Lakes. Separations. 2022; 9(11):344. https://doi.org/10.3390/separations9110344
Chicago/Turabian StyleLiu, Yueyu, Rong Zhu, Chandrasekar Srinivasakannan, Tingting Li, Shiwei Li, Shaohua Yin, and Libo Zhang. 2022. "Application of Nanofiltration Membrane Based on Metal-Organic Frameworks (MOFs) in the Separation of Magnesium and Lithium from Salt Lakes" Separations 9, no. 11: 344. https://doi.org/10.3390/separations9110344