Naturally Occurring Montmorillonite-Based Polymer Monolith Composites as Stationary Phases for Capillary Liquid and Gas Chromatography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of the Columns
2.3. Characterization of the Stationary Phase Materials
2.4. Capillary Gas Chromatography
2.5. Capillary Liquid Chromatography
3. Results and Discussion
3.1. Capillary Columns’ Preparation
3.2. Characterization and Stability of the Stationary Phases
3.3. Gas Chromatography Applications
3.3.1. Separation of Alkanes
3.3.2. Separation of Alkylbenzenes
3.3.3. Separation of Alcohols
3.3.4. Separation of Organic Solvents
3.3.5. Separation of Isomers
3.4. Capillary Liquid Chromatography Applications
3.4.1. Separation of Alkylbenzenes
3.4.2. Separation of PAHs
3.4.3. Separation of Ketones
3.4.4. Separation of Phenols
3.5. Repeatability and Reproducibility Study
3.6. Comparison Study
3.6.1. Comparison with Commercial GC Column
3.6.2. Comparison with the Commercial HPLC Column
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lundanes, E.; Reubsaet, L.; Greibrokk, T. Chromatography, Basic Principles, Sample Preparations and Related Methods; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany, 2014. [Google Scholar]
- Hao, C.; Zhao, X.; Yang, P. GC-MS and HPLC-MS analysis of bioactive pharmaceuticals and personal-care products in environmental matrices. TrAC Trends Anal. Chem. 2007, 26, 569–580. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Hajšlová, J. Application of gas chromatography in food analysis. TrAC Trends Anal. Chem. 2002, 21, 686–697. [Google Scholar] [CrossRef]
- Mejía-Carmona, K.; da Silva Burato, J.S.; Borsatto, J.V.B.; de Toffoli, A.L.; Lanças, F.M. Miniaturization of liquid chromatography coupled to mass spectrometry: 1. Current trends on miniaturized LC columns. TrAC Trends Anal. Chem. 2020, 122, 115735. [Google Scholar] [CrossRef]
- Rieux, L.; Sneekes, E.; Swart, R. Nano LC: Principles, evolution, and state-of-the-art of the technique. LC-GC N. Am. 2011, 29, 926–935. [Google Scholar]
- Svec, F.; Frechet, J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem. 1992, 64, 820–822. [Google Scholar] [CrossRef]
- Svec, F.; Lv, Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal. Chem. 2015, 87, 250–274. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.; Ren, J.; Beckner, M.; He, C.; Liu, S. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Anal. Chim. Acta 2019, 1046, 48–68. [Google Scholar] [CrossRef] [PubMed]
- Connolly, D.; Currivan, S.; Paull, B. Polymeric monolithic materials modified with nanoparticles for separation and detection of biomolecules: A review. Proteomics 2012, 12, 2904–2917. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, X.; Lei, H.; Niu, W.; Bai, L. Preparation of a hybrid cation-exchange monolith and its application for the separation of proteins by high performance liquid chromatography. Anal. Lett. 2013, 46, 1477–1494. [Google Scholar] [CrossRef]
- Vaast, A.; Terryn, H.; Svec, F.; Eeltink, S. Nanostructured porous polymer monolithic columns for capillary liquid chromatography of peptides. J. Chromatogr. A 2014, 1374, 171–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, T.; Yang, X.; Xu, Y.; Ji, Y. Recent advances in the preparation and application of monolithic capillary columns in separation science. Anal. Chim. Acta 2016, 931, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Gama, M.; Rocha, F.; Bottoli, C. Monoliths: Synthetic routes, functionalization and innovative analytical applications. TrAC Trends Anal. Chem. 2019, 115, 39–51. [Google Scholar] [CrossRef]
- Lin, H.; Ou, J.; Liu, Z.; Wang, H.; Dong, J.; Zou, H. Facile construction of microporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography. J. Chromatogr. A 2015, 1379, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Al-Rifai, A.; Aqel, A.; Al Wahibi, L.; ALOthman, Z.; Badjah-Hadj-Ahmed, A. Carbon nanotube-based benzyl polymethacrylate composite monolith as a solid phase extraction adsorbent and a stationary phase material for simultaneous extraction and analysis of polycyclic aromatic hydrocarbon in water. J. Chromatogr. A 2018, 1535, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Maya, F.; Svec, F. A new approach to the preparation of large surface area poly(styrene-co-divinylbenzene) monoliths via knitting of loose chains using external crosslinkers and application of these monolithic columns for separation of small molecules. Polymer 2014, 55, 340–346. [Google Scholar] [CrossRef]
- Lubbad, S. Optimization of poly(methyl styrene-co-bis(p-vinylbenzyl)dimethylsilane)-based capillary monoliths for separation of low, medium, and high molecular-weight analytes. J. Chromatogr. A 2016, 1443, 126–135. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Jiang, X.; Dong, P.; Liu, H.; Bai, L.; Yan, H. Preparation of a poly(styrene-co-dpha-co-edma) monolith and its application for the separation of small molecules and biomacromolecules by HPLC. Talanta 2017, 165, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ou, J.; Wei, Y.; Wang, H.; Liu, Z.; Chen, L.; Zou, H. A novel polymeric monolith prepared with multi-acrylate crosslinker for retention-independent efficient separation of small molecules in capillary liquid chromatography. Anal. Chim. Acta 2015, 883, 90–98. [Google Scholar] [CrossRef]
- Amalia, S.; Angga, S.C.; Iftitah, E.D.; Septiana, D.; Anggraeny, B.O.D.; Warsito; Hasanah, A.N.; Sabarudin, A. Immobilization of trypsin onto porous methacrylate-based monolith for flow-through protein digestion and its potential application to chiral separation using liquid chromatography. Heliyon 2021, 7, e07707. [Google Scholar] [CrossRef] [PubMed]
- Albekairi, N.; Aqel, A.; ALOthman, Z.A. Simultaneous capillary liquid chromatography determination of drugs in pharmaceutical preparations using tunable platforms of polymethacrylate monolithic columns modified with octadecylamine. Chromatographia 2019, 82, 1003–1015. [Google Scholar] [CrossRef]
- Speltini, A.; Merli, D.; Profumo, A. Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials based chromatographic stationary phases: A review. Ana. Chim. Acta 2013, 783, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.B. Clays and clay minerals in the construction industry. Minerals 2022, 12, 301. [Google Scholar] [CrossRef]
- Massaro, M.; Colletti, C.G.; Lazzara, G.; Riela, S. The use of some clay minerals as natural resources for drug carrier applications, J. Funct. Biomater. 2018, 9, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthony, W.J.; Bideaux, A.R.; Kenneth, W.B.; Monte, C.N. Montmorillonite. In Handbook of Mineralogy. (Silica, Silicates); Mineralogical Society of America: Chantilly, VA, USA, 1995; Volume 2. [Google Scholar]
- Massaro, M.; Cavallaro, G.; Lazzara, G.; Riela, S. Covalently modified nanoclays: Synthesis, properties and applications. In Clay Nanoparticles, Properties and Applications Micro and Nano Technologies; Cavallaro, G., Fakhrullin, R., Pasbakhsh, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 305–333. [Google Scholar]
- Meyers, V.M. Practical High-Performance Liquid Chromatography; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Aqel, A.; ALOthman, Z.A.; Yusuf, K.; Badjah-Hadj-Ahmed, A.Y.; Alwarthan, A.A. Preparation and evaluation of benzyl methacrylate monoliths for capillary chromatography. J. Chromatogr. Sci. 2014, 52, 201–210. [Google Scholar] [CrossRef] [PubMed]
Column | MMT (mg mL−1) | MMT (%) | Porosity (%) | Permeability (m2) | ||
---|---|---|---|---|---|---|
Helium a | Acetonitrile b | |||||
CG1 | 0.0 | 0.0 | 88 | 8.49 × 10−12 | 4.79 × 10−13 | GC columns 30 cm long × 250 μm i.d. |
CG2 | 1.0 | 0.1 | 86 | 3.72 × 10−12 | 3.73 × 10−13 | |
CG3 | 2.0 | 0.2 | 85 | 3.35 × 10−12 | 3.14 × 10−13 | |
CG4 | 3.0 | 0.3 | 82 | 2.57 × 10−12 | 1.05 × 10−13 | |
CG5 | 4.0 | 0.4 | 80 | 1.84 × 10−12 | 9.61 × 10−14 | |
CG6 | 5.0 | 0.5 | 79 | 1.57 × 10−12 | 9.33 × 10−14 | |
CL1 | 0.0 | 0.0 | 77 | 5.89 × 10−13 | 6.53 × 10−14 | HPLC columns 20 cm long × 100 μm i.d. |
CL2 | 1.0 | 0.1 | 75 | 4.95 × 10−13 | 6.10 × 10−14 | |
CL3 | 2.0 | 0.2 | 74 | 3.15 × 10−13 | 5.21 × 10−14 | |
CL4 | 3.0 | 0.3 | 72 | 1.27 × 10−13 | 3.03 × 10−14 | |
CL5 | 4.0 | 0.4 | 71 | 8.86 × 10−14 | 1.44 × 10−14 | |
CL6 | 5.0 | 0.5 | 67 | ND c | 9.73 × 10−15 |
CG4 Column | CL4 Column | ||||||||
---|---|---|---|---|---|---|---|---|---|
Solute | tR (min) | H (mm) | Rs | As | Solute | tR (min) | H (mm) | Rs | As |
pentane | 1.73 | 0.151 | - | 1.13 | benzene | 0.38 | 0.081 | - | 1.13 |
hexane | 3.27 | 0.110 | 2.82 | 0.94 | toluene | 0.58 | 0.052 | 2.17 | 1.05 |
heptane | 4.82 | 0.069 | 3.41 | 0.96 | ethylbenzene | 0.85 | 0.034 | 3.19 | 1.09 |
octane | 7.25 | 0.065 | 4.54 | 1.07 | propylbenzene | 1.19 | 0.043 | 3.85 | 1.13 |
nonane | 10.92 | 0.054 | 5.58 | 1.02 | butylbenzene | 1.86 | 0.044 | 4.73 | 1.14 |
benzene | 0.38 | 0.078 | - | 1.06 | pentylbenzene | 2.94 | 0.057 | 6.52 | 1.07 |
toluene | 0.67 | 0.066 | 1.87 | 1.13 | hexylbenzene | 4.65 | 0.066 | 8.19 | 1.25 |
ethylbenzene | 0.83 | 0.059 | 2.62 | 1.10 | heptylbenzene | 7.52 | 0.044 | 11.73 | 1.28 |
propylbenzene | 1.38 | 0.031 | 4.03 | 1.15 | naphthalene | 4.38 | 0.020 | - | 1.15 |
butylbenzene | 2.15 | 0.027 | 5.94 | 1.14 | acenaphthylene | 5.14 | 0.017 | 2.36 | 1.23 |
pentylbenzene | 3.47 | 0.028 | 7.37 | 1.04 | phenanthrene | 5.71 | 0.031 | 2.02 | 1.31 |
hexylbenzene | 5.57 | 0.029 | 9.27 | 1.05 | anthracene | 6.28 | 0.022 | 1.85 | 1.27 |
heptylbenzene | 9.16 | 0.049 | 11.93 | 1.24 | pyrene | 7.31 | 0.018 | 2.28 | 1.08 |
methanol | 0.30 | 0.044 | - | 1.12 | chrysene | 9.14 | 0.042 | 4.35 | 1.24 |
ethanol | 0.51 | 0.034 | 1.38 | 1.18 | dibenzo(a,h)anthracene | 11.74 | 0.035 | 5.83 | 1.26 |
propanol | 0.78 | 0.026 | 2.69 | 1.05 | acetone | 6.52 | 0.293 | - | 1.37 |
butanol | 1.49 | 0.061 | 5.98 | 1.13 | cyclohexanone | 9.23 | 0.171 | 1.54 | 1.24 |
pentanol | 2.83 | 0.066 | 7.27 | 1.18 | acetophenone | 14.64 | 0.102 | 2.96 | 1.38 |
diethyl ether | 0.44 | 0.063 | - | 1.06 | butyrophenone | 20.10 | 0.095 | 2.39 | 1.37 |
dichloromethane | 0.76 | 0.092 | 4.19 | 1.10 | 4-aminophenol | 1.62 | 0.268 | - | 1.35 |
acetone | 1.03 | 0.117 | 1.92 | 1.14 | p-cresol | 2.46 | 0.270 | 1.51 | 1.42 |
chloroform | 1.38 | 0.094 | 2.86 | 1.18 | 4-nitrophenol | 4.13 | 0.132 | 2.38 | 1.26 |
tetrahydrofuran | 1.75 | 0.081 | 3.81 | 1.27 | 4-chlorophenol | 5.84 | 0.185 | 1.82 | 1.47 |
isooctane | 0.26 | 0.086 | - | 1.13 | 2-naphthol | 9.75 | 0.253 | 3.20 | 1.39 |
octane | 0.34 | 0.062 | 2.19 | 1.26 | |||||
p-xylene | 2.13 | 0.205 | - | 1.07 | |||||
m-xylene | 3.90 | 0.181 | 2.98 | 1.28 | |||||
o-xylene | 5.75 | 0.120 | 2.37 | 1.16 | |||||
isopropanol | 0.16 | 0.051 | - | 1.19 | |||||
propanol | 0.19 | 0.040 | 1.69 | 1.26 |
CG4 | CL4 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ethylbenzene | Propylbenzene | Ethylbenzene | Propylbenzene | ||||||||||||
tR (min) | H (mm) | A (×104) | tR (min) | H (mm) | A (×104) | Rs | tR (min) | H (mm) | A | tR (min) | H (mm) | A | Rs | ||
1 | 0.84 | 0.077 | 106.16 | 1.38 | 0.050 | 128.82 | 4.01 | 0.85 | 0.045 | 85,485 | 1.18 | 0.051 | 64,719 | 3.84 | Run-to-run |
2 | 0.83 | 0.079 | 105.95 | 1.38 | 0.052 | 129.63 | 4.04 | 0.85 | 0.045 | 85,206 | 1.19 | 0.054 | 65,027 | 3.85 | |
3 | 0.81 | 0.080 | 106.88 | 1.37 | 0.052 | 128.04 | 4.03 | 0.85 | 0.044 | 85,851 | 1.19 | 0.054 | 64,529 | 3.86 | |
4 | 0.83 | 0.078 | 107.08 | 1.38 | 0.050 | 127.59 | 4.03 | 0.85 | 0.044 | 85,830 | 1.20 | 0.052 | 64,833 | 3.86 | |
5 | 0.83 | 0.079 | 106.62 | 1.38 | 0.051 | 128.07 | 4.02 | 0.84 | 0.044 | 85,639 | 1.19 | 0.052 | 64,963 | 3.85 | |
Avg. | 0.83 | 0.079 | 106.54 | 1.38 | 0.051 | 128.43 | 4.03 | 0.85 | 0.044 | 85,602 | 1.19 | 0.053 | 64,814 | 3.85 | |
%RSD | 1.32 | 1.45 | 0.45 | 0.32 | 1.96 | 0.63 | 0.28 | 0.53 | 1.23 | 0.31 | 0.59 | 2.55 | 0.31 | 0.22 | |
1 | 0.82 | 0.074 | 106.34 | 1.36 | 0.052 | 123.76 | 4.03 | 0.85 | 0.043 | 25,832 | 1.19 | 0.055 | 65,723 | 3.84 | Day-to-day |
2 | 0.82 | 0.073 | 105.14 | 1.36 | 0.054 | 128.55 | 4.07 | 0.82 | 0.045 | 26,482 | 1.16 | 0.052 | 64,368 | 3.83 | |
3 | 0.84 | 0.077 | 108.47 | 1.34 | 0.054 | 122.01 | 4.04 | 0.82 | 0.047 | 26,074 | 1.15 | 0.051 | 64,632 | 3.86 | |
4 | 0.82 | 0.073 | 106.67 | 1.34 | 0.055 | 118.54 | 4.03 | 0.82 | 0.046 | 25,886 | 1.17 | 0.055 | 63,769 | 3.85 | |
5 | 0.84 | 0.074 | 107.40 | 1.33 | 0.051 | 126.84 | 4.02 | 0.84 | 0.043 | 25,730 | 1.15 | 0.054 | 64,488 | 3.85 | |
Avg. | 0.83 | 0.074 | 106.80 | 1.35 | 0.053 | 123.94 | 4.04 | 0.83 | 0.045 | 26,001 | 1.16 | 0.053 | 64,596 | 3.85 | |
%RSD | 1.32 | 2.21 | 1.16 | 1.00 | 3.09 | 3.19 | 0.48 | 1.70 | 3.99 | 1.14 | 1.44 | 3.40 | 1.10 | 0.30 | |
1 | 0.83 | 0.074 | 106.80 | 1.35 | 0.053 | 123.94 | 4.04 | 0.83 | 0.045 | 26,001 | 1.16 | 0.053 | 64,596 | 3.85 | Column-to-column |
2 | 0.73 | 0.063 | 113.92 | 1.27 | 0.046 | 141.63 | 3.83 | 0.85 | 0.061 | 24,207 | 1.20 | 0.050 | 63,762 | 3.92 | |
3 | 0.86 | 0.061 | 100.64 | 1.38 | 0.049 | 118.35 | 3.94 | 0.85 | 0.069 | 22,750 | 1.22 | 0.078 | 65,501 | 3.98 | |
4 | 0.84 | 0.085 | 122.87 | 1.21 | 0.067 | 127.82 | 4.08 | 0.78 | 0.072 | 25,381 | 1.11 | 0.061 | 67,142 | 3.76 | |
5 | 0.82 | 0.068 | 107.04 | 1.38 | 0.071 | 109.27 | 3.82 | 0.88 | 0.047 | 22,152 | 1.18 | 0.047 | 58,472 | 4.07 | |
Avg. | 0.82 | 0.070 | 110.25 | 1.32 | 0.057 | 124.20 | 3.94 | 0.84 | 0.059 | 24,098 | 1.17 | 0.058 | 63,895 | 3.92 | |
%RSD | 6.16 | 13.79 | 7.69 | 5.71 | 19.48 | 9.65 | 3.00 | 4.42 | 21.05 | 6.85 | 3.59 | 21.52 | 5.13 | 3.04 |
Solute | Commercial GC Column | Commercial HPLC Column | ||||||
---|---|---|---|---|---|---|---|---|
tR (min) | H (mm) | Rs | As | tR (min) | H (mm) | Rs | As | |
benzene | 0.92 | 0.305 | 1.06 | 3.81 | 0.083 | 1.25 | ||
toluene | 1.38 | 0.393 | 2.20 | 1.11 | 4.47 | 0.058 | 1.40 | 1.20 |
ethylbenzene | 2.10 | 0.220 | 2.97 | 1.20 | 5.27 | 0.047 | 1.79 | 1.34 |
propylbenzene | 3.17 | 0.114 | 4.38 | 1.22 | 6.46 | 0.043 | 2.74 | 1.22 |
butylbenzene | 4.89 | 0.089 | 6.19 | 1.14 | 8.07 | 0.041 | 3.71 | 1.21 |
pentylbenzene | 7.53 | 0.058 | 7.74 | 1.08 | 10.18 | 0.036 | 4.49 | 1.19 |
hexylbenzene | 11.45 | 0.084 | 9.68 | 1.18 | 13.32 | 0.033 | 5.74 | 1.21 |
heptylbenzene | 17.63 | 0.060 | 12.36 | 1.26 | 17.51 | 0.031 | 6.08 | 1.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aqel, A.; Obbed, M.; Ghfar, A.A.; Yusuf, K.; Alsubhi, A.M.; Badjah-Hadj-Ahmed, A. Naturally Occurring Montmorillonite-Based Polymer Monolith Composites as Stationary Phases for Capillary Liquid and Gas Chromatography. Separations 2022, 9, 389. https://doi.org/10.3390/separations9120389
Aqel A, Obbed M, Ghfar AA, Yusuf K, Alsubhi AM, Badjah-Hadj-Ahmed A. Naturally Occurring Montmorillonite-Based Polymer Monolith Composites as Stationary Phases for Capillary Liquid and Gas Chromatography. Separations. 2022; 9(12):389. https://doi.org/10.3390/separations9120389
Chicago/Turabian StyleAqel, Ahmad, Munir Obbed, Ayman A. Ghfar, Kareem Yusuf, Ameen M. Alsubhi, and Ahmed Badjah-Hadj-Ahmed. 2022. "Naturally Occurring Montmorillonite-Based Polymer Monolith Composites as Stationary Phases for Capillary Liquid and Gas Chromatography" Separations 9, no. 12: 389. https://doi.org/10.3390/separations9120389
APA StyleAqel, A., Obbed, M., Ghfar, A. A., Yusuf, K., Alsubhi, A. M., & Badjah-Hadj-Ahmed, A. (2022). Naturally Occurring Montmorillonite-Based Polymer Monolith Composites as Stationary Phases for Capillary Liquid and Gas Chromatography. Separations, 9(12), 389. https://doi.org/10.3390/separations9120389