Measuring Vitamin D3 Metabolic Status, Comparison between Vitamin D Deficient and Sufficient Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instruments and Apparatus
2.3. Plasma Sampling and Storage
2.4. Online SPE–LC–MS/MS Determination
2.5. Method Validation
2.6. Data Treatment
3. Results
3.1. Optimization of MS/MS Detection of Target Metabolites
3.2. Evaluation of Adequate SPE Conditions
3.3. Analytical Features of the Proposed Method
3.3.1. Best-Matched IS (B-MIS) Evaluation, Linearity, and Sensitivity
3.3.2. Extraction Efficiency
3.3.3. Accuracy and Precision Assessment
3.4. Application of the Proposed Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Van Schoor, N.; Lips, P. Global Overview of Vitamin D Status. Endocrinol. Metab. Clin. N. Am. 2017, 46, 845–870. [Google Scholar] [CrossRef] [PubMed]
- Tuckey, R.C.; Cheng, C.Y.S.; Slominski, A.T. The serum vitamin d metabolome: What we know and what is still to discover. J. Steroid Biochem. Mol. Biol. 2019, 186, 4–21. [Google Scholar] [CrossRef] [PubMed]
- Makris, K.; Sempos, C.; Cavalier, E. The measurement of vitamin D metabolites part II—the measurement of the various vitamin D metabolites. Hormones 2020, 19, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Bikle, D. Vitamin D metabolism revised: Fall of dogmas. J. Bone Miner. Res. 2019, 34, 1985–1992. [Google Scholar] [CrossRef]
- Berg, A.H.; Powe, C.E.; Evans, M.K.; Wenger, J.; Ortiz, G.; Zonderman, A.B.; Suntharalingam, P.; Lucchesi, K.; Powe, N.R.; Karumanchi, S.A.; et al. 24,25-dihydroxyvitamin D3 and vitamin D status of community-dwelling black and white americans. Clin. Chem. 2015, 61, 877–884. [Google Scholar] [CrossRef] [Green Version]
- Fabregat-Cabello, N.; Farre-Segura, J.; Huyghebaert, L.; Peeters, S.; Le Goff, C.; Souberbielle, J.C.; Cavalier, É. A fast and simple method for simultaneous measurements of 25(OH)D, 24,25(OH)2D and the vitamin d metabolite ratio (VMR) in serum samples by LC-MS/MS. Clin. Chim. Acta 2017, 473, 116–123. [Google Scholar] [CrossRef]
- Park, H.; Brannon, P.M.; West, A.A.; Yan, J.; Jiang, X.; Perry, C.A.; Malysheva, O.V.; Mehta, S.; Caudill, M.A. Vitamin D metabolism varies among women in different reproductive states consuming the same intakes of vitamin D and related nutrients. J. Nutr. 2016, 146, 1537–1545. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.C.Y.; Nicholls, H.; Piec, I.; Washbourne, C.J.; Dutton, J.J.; Jackson, S.; Greeves, J.; Fraser, W.D. Reference intervals for serum 24,25-dihydroxyvitamin D and the ratio with 25-hydroxyvitamin D established using a newly developed LC–MS/MS Method. J. Nutr. Biochem. 2017, 46, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.; Prosser, D.E.; Kaufmann, M. 25-Hydroxyvitamin D-24-Hydroxylase (CYP24A1): Its important role in the degradation of vitamin D. Arch. Biochem. Biophys. 2012, 523, 9–18. [Google Scholar] [CrossRef]
- Pludowski, P.; Holick, M.F.; Pilz, S.; Wagner, C.L.; Hollis, B.W.; Grant, W.B.; Shoenfeld, Y.; Lerchbaum, E.; Llewellyn, D.J.; Kienreich, K.; et al. Autoimmunity reviews vitamin d effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality—A review of recent evidence. Autoimmun. Rev. 2013, 12, 976–989. [Google Scholar] [CrossRef]
- St-Arnaud, R.; Naja, R.P. Molecular and cellular endocrinology vitamin D metabolism, cartilage and bone fracture repair. Mol. Cell. Endocrinol. 2011, 347, 48–54. [Google Scholar] [CrossRef]
- Martineau, C.; Jones, G.; St-Arnaud, R.; Martineau, C.; Naja, R.P.; Husseini, A.; Hamade, B.; Kaufmann, M.; Akhouayri, O.; Arabian, A.; et al. Optimal bone fracture repair requires 24R,25-dihydroxyvitamin D3 and its effector molecule FAM57B2. J. Clin. Investig. 2018, 128, 3546–3557. [Google Scholar] [CrossRef] [Green Version]
- Dirks, N.F.; Ackermans, M.T.; Lips, P.; De Jongh, R.T.; Vervloet, M.G.; De Jonge, R.; Heijboer, A.C. The when, what & how of measuring vitamin D metabolism in clinical medicine. Nutrients 2018, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, M.; Martineau, C.; Arabian, A.; Traynor, M.; St-arnaud, R. Calcioic acid: In vivo detection and quantification of the terminal C24-oxidation product of 25-hydroxyvitamin D3 and related intermediates in serum of mice treated with 24,25-dihydroxyvitamin D3. J. Steroid Biochem. Mol. Biol. 2019, 188, 23–28. [Google Scholar] [CrossRef]
- Sakaki, T.; Sawada, N.; Komai, K.; Shiozawa, S.; Yamada, S.; Yamamoto, K. Dual Metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human. Eur. J. Biochem. 2000, 267, 6158–6165. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Yang, Y.; Wu, L.; Li, Y.; Sun, C. Recent advances in sample preparation and analysis methods for vitamin D and its analogues in different matrices. Trends Anal. Chem. 2019, 110, 204–220. [Google Scholar] [CrossRef]
- Kassim, N.S.A.; Shaw, P.N.; Hewavitharana, A.K. Simultaneous determination of 12 vitamin D compounds in human serum using online sample preparation and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2018, 1533, 57–65. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 15 March 2021).
- Boysen, A.K.; Heal, K.R.; Carlson, L.T.; Ingalls, A.E. Best-Matched Internal Standard Normalization in liquid chromatography−mass spectrometry metabolomics applied to environmental samples. Anal. Chem. 2018, 90, 1363–1369. [Google Scholar] [CrossRef]
- Mena-Bravo, A.; Ferreiro-Vera, C.; Priego-Capote, F.; Maestro, M.A.; Mouriño, A.; Quesada-Gómez, J.M.; Luque de Castro, M.D. Quantitative analytical method to evaluate the metabolism of vitamin D. Clin. Chim. Acta 2015, 442, 6–12. [Google Scholar] [CrossRef]
- Okabe, H.; Shimizu, C.; Yamamoto, M.; Kikuchi, R.; Minami, A.; Chen, Y.F.; Imai, H.; Mizuta, M.; Chen, Z.; Chiba, H.; et al. Determination of serum 25-hydroxyvitamin D3 by LC/MS/MS and its monthly variation in Sapporo indoor workers. Anal. Sci. 2018, 34, 1043–1047. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, L.J.; Farruggia, M.; Veronese, N.; Barbagallo, M. Vitamin D sources, metabolism, and Deficiency: Available compounds and guidelines for its treatment. Metabolites 2021, 11, 255. [Google Scholar] [CrossRef]
- Bouillon, R. Comparative analysis of nutritional guidelines for vitamin D. Nat. Rev. Endocrinol. 2017, 13, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Wamberg, L.; Christiansen, T.; Paulsen, S.K.; Fisker, S.; Rask, P.; Rejnmark, L.; Richelsen, B.; Pedersen, S.B. Expression of vitamin D-metabolizing enzymes in human adipose tissue—The effect of obesity and diet-induced weight loss. Int. J. Obes. 2013, 37, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Gil, Á.; Plaza-diaz, J.; Mesa, M.D. Vitamin D: Classic and novel actions. Ann. Nutr. Metab. 2018, 72, 87–95. [Google Scholar] [CrossRef]
Cohorts | Obese Patients | Control Individuals | Obese Patients vs. Control Individuals | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Characteristic | Total (n = 40) | Severe deficiency group (n = 16) | Deficiency group (n = 24) | ° p | Total (n = 90) | Severe deficiency group (n = 20) | Deficiency group (n = 40) | Sufficiency group (n = 30) | ° p | † p | |
Gender (%) | Female | 55.0 (22/40) | 50.0 (8/16) | 58.3 (14/24) | 0.52 | 71.1 (64/90) | 55.0 (11/20) | 72.5 (29/40) | 80.0 (24/30) | 0.16 | 0.11 |
Male | 45.0 (18/40) | 50.0 (8/16) | 41.7 (10/24) | 28.9 (26/90) | 45.0 (9/20) | 27.5 (11/40) | 20.0 (6/30) | ||||
Age (years old) * | 45.2 ± 10.6 | 44.0 ± 2.4 | 45.5 ± 2.0 | 0.83 | 26.8 ± 2.5 | 26.6 ± 2.5 | 26.9 ± 2.6 | 26.9 ± 2.2 | 0.71 | <0.05 | |
BMI (kg m−2) * | 46.1 ± 5.9 | 49.5 ± 3.1 | 45.4 ± 0.9 | 0.27 | |||||||
Presence of metabolic or mechanic comorbidities (%) ^ | 70.0 (28/40) | 87.5 (14/16) | 66.7 (16/24) | 0.25 |
Analyte | Concentration Level | Extraction Efficiency (%) | Accuracy (%) | Within-Day Variability (RSD, %) | Between-Days Variability (RSD, %) |
---|---|---|---|---|---|
1,24,25(OH)2D3 | QCb | 99.7 ± 0.5 | 100.0 ± 14.0 | 6.9 | 7.2 |
QCl | 92.9 ± 2.0 | 103.3 ± 9.0 | 7.2 | 7.7 | |
QCm | 97.4 ± 2.6 | 98.3 ± 7.0 | 6.3 | 6.6 | |
QCh | 98.9 ± 1.0 | 99.1 ± 4.0 | 5.1 | 5.8 | |
1,25(OH)2D3 | QCb | 95.8 ± 7.4 | 102.6 ± 10.0 | 9.0 | 11.7 |
QCl | 90.3 ± 1.3 | 111.4 ± 8.0 | 7.8 | 8.1 | |
QCm | 94.6 ± 1.9 | 99.7 ± 8.0 | 6.4 | 6.7 | |
QCh | 98.2 ± 0.2 | 99.0 ± 5.0 | 4.7 | 6.2 | |
24,25(OH)2D3 | QCb | 98.7 ± 2.3 | 90.4 ± 5.0 | 5.1 | 8.1 |
QCl | 97.8 ± 2.0 | 90.0 ± 4.0 | 10.7 | 10.8 | |
QCm | 95.0 ± 4.4 | 92.4 ± 3.0 | 6.8 | 7.3 | |
QCh | 100.0 ± 0.0 | 95.2 ± 6.0 | 5.0 | 5.5 | |
25(OH)D3 | QCb | 96.0 ± 0.8 | 96.6 ± 3.0 | 4.7 | 5.3 |
QCl | 98.9 ± 1.4 | 105.8 ± 8.0 | 6.9 | 8.1 | |
QCm | 99.2 ± 1.4 | 97.0 ± 7.0 | 6.1 | 6.2 | |
QCh | 99.0 ± 1.7 | 100.2 ± 6.0 | 4.6 | 5.1 | |
Vitamin D3 | QCb | 99.8 ± 0.1 | 102.6 ± 9.0 | 5.1 | 7.6 |
QCl | 97.6 ± 3.7 | 99.7 ± 7.0 | 9.3 | 9.8 | |
QCm | 98.4 ± 2.2 | 100.6 ± 8.0 | 7.3 | 7.7 | |
QCh | 99.6 ± 0.6 | 103.1 ± 5.0 | 3.7 | 5.2 |
Cohort | Obese Patients | Control Individuals | Obese Patients vs. Control Individuals | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Metabolites | Total Group Levels | Severe Deficiency Group Levels 1 | Deficiency Group Levels 2 | Mann–Whitney U Test (p-Value) * | Total Group Levels | Severe Deficiency Group Levels 1 | Deficiency Group Levels 2 | Sufficiency Group Levels 3 | Kruskal–Wallis (p-Value) ^ | Significant Pairwise Comparisons (Wilcoxon Rank) | Mann–Whitney U Test (p-Value) * | |
1,24,25(OH)3D3 (pg mL−1) | 56.5 ± 113.9 | 23.9 ± 50.8 | 78.2 ± 138.2 | >0.05 | 564.8 ± 236.0 | 581.5 ± 254.5 | 587.9 ± 229.5 | 522.8 ± 234.2 | >0.05 | Not applicable | <0.0001 | |
24,25(OH)2D3 (ng mL−1) | 1.5 ± 1.0 | 1.0 ± 0.7 | 1.9 ± 1.0 | 0.002 | 1.4 ± 2.3 | 0.2 ± 0.6 | 0.5 ± 0.9 | 3.2 ± 3.1 | <0.0001 | Severe Deficiency vs. Sufficiency | <0.0001 | 0.0005 |
Deficiency vs. Sufficiency | ||||||||||||
1,25(OH)2D3 (pg mL−1) | 38.1 ± 39.2 | 37.0 ± 30.4 | 38.8 ± 44.7 | >0.05 | 93.0 ± 78.8 | 96.2 ± 76.6 | 88.2 ± 89.2 | 97.2 ± 66.7 | >0.05 | Not applicable | <0.0001 | |
25(OH)D3 (ng mL−1) | 13.0 ± 4.8 | 8.2 ± 2.5 | 16.1 ± 3.1 | 3.2·10−11 | 19.7 ± 11.5 | 9.2 ± 2.1 | 15.3 ± 2.3 | 32.4 ± 11.4 | <0.0001 | Severe Deficiency vs. Sufficiency | <0.0001 | 0.001 |
Severe Deficiency vs. Deficiency | ||||||||||||
Deficiency vs. Sufficiency | ||||||||||||
Vitamin D3 (ng mL−1) | 2.9 ± 1.9 | 2.5 ± 1.3 | 3.1 ± 2.1 | >0.05 | 2.7 ± 1.3 | 1.8 ± 1.0 | 2.8 ± 1.0 | 3.2 ± 1.5 | 0.0005 | Severe Deficiency vs. Sufficiency | 0.002 | >0.05 |
Severe Deficiency vs. Deficiency | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Peinado, L.d.l.S.; Calderón-Santiago, M.; Herrera-Martínez, A.D.; León-Idougourram, S.; Gálvez-Moreno, M.Á.; Sánchez-Cano, R.L.; Bouillon, R.; Quesada-Gómez, J.M.; Priego-Capote, F. Measuring Vitamin D3 Metabolic Status, Comparison between Vitamin D Deficient and Sufficient Individuals. Separations 2022, 9, 141. https://doi.org/10.3390/separations9060141
Castillo-Peinado LdlS, Calderón-Santiago M, Herrera-Martínez AD, León-Idougourram S, Gálvez-Moreno MÁ, Sánchez-Cano RL, Bouillon R, Quesada-Gómez JM, Priego-Capote F. Measuring Vitamin D3 Metabolic Status, Comparison between Vitamin D Deficient and Sufficient Individuals. Separations. 2022; 9(6):141. https://doi.org/10.3390/separations9060141
Chicago/Turabian StyleCastillo-Peinado, Laura de los Santos, Mónica Calderón-Santiago, Aura Dulcinea Herrera-Martínez, Soraya León-Idougourram, María Ángeles Gálvez-Moreno, Rafael Luis Sánchez-Cano, Roger Bouillon, Jose Manuel Quesada-Gómez, and Feliciano Priego-Capote. 2022. "Measuring Vitamin D3 Metabolic Status, Comparison between Vitamin D Deficient and Sufficient Individuals" Separations 9, no. 6: 141. https://doi.org/10.3390/separations9060141
APA StyleCastillo-Peinado, L. d. l. S., Calderón-Santiago, M., Herrera-Martínez, A. D., León-Idougourram, S., Gálvez-Moreno, M. Á., Sánchez-Cano, R. L., Bouillon, R., Quesada-Gómez, J. M., & Priego-Capote, F. (2022). Measuring Vitamin D3 Metabolic Status, Comparison between Vitamin D Deficient and Sufficient Individuals. Separations, 9(6), 141. https://doi.org/10.3390/separations9060141