Recovery of Bioactive Extracts from Olive Leaves Using Conventional and Microwave-Assisted Extraction with Classical and Deep Eutectic Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Material
2.3. DES Synthesis
2.4. Density Measurements
2.5. Viscosity Measurements
2.6. DPPH Free Radical Scavenging Activity
2.7. Determination of Total Phenolic Content (TPC)
2.8. High-Performance Liquid Chromatography (HPLC) Analysis
2.9. Conventional Extraction (Maceration)
2.10. Microwave-Assisted Extraction (MAE)
3. Results and Discussion
3.1. Density and Viscosity Measurements
3.2. Conventional Extraction (Maceration)
3.3. Microwave-Assisted Extraction
3.4. Comparison between Conventional and Microwave-Assisted Extraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bernhoft, A. A brief review on bioactive compounds in plants. In Bioactive Compounds in Plants-Benefits and Risks for Man and Animals; The Norwegian Academy of Science and Letters: Oslo, Norway, 2010; Volume 50, pp. 11–17. [Google Scholar]
- Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural Products (Secondary Metabolites). Biochem. Mol. Biol. Plants 2000, 24, 1250–1319. [Google Scholar]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Ansari, M.; Kazemipour, M.; Fathi, S. Development of a simple green extraction procedure and HPLC method for determination of oleuropein in olive leaf extract applied to a multi-source comparative study. J. Iran. Chem. Soc. 2011, 8, 38–47. [Google Scholar] [CrossRef]
- Yuan, J.-J.; Wang, C.-Z.; Ye, J.-Z.; Tao, R.; Zhang, Y.-S. Enzymatic hydrolysis of oleuropein from Olea europea (olive) leaf extract and antioxidant activities. Molecules 2015, 20, 2903–2921. [Google Scholar] [CrossRef] [PubMed]
- Guinda, Á.; Castellano, J.M.; Santos-Lozano, J.M.; Delgado-Hervás, T.; Gutiérrez-Adánez, P.; Rada, M. Determination of major bioactive compounds from olive leaf. LWT-Food Sci. Technol. 2015, 64, 431–438. [Google Scholar] [CrossRef]
- Lins, P.G.; Marina Piccoli Pugine, S.; Scatolini, A.M.; de Melo, M.P. In vitro antioxidant activity of olive leaf extract (Olea europaea L.) and its protective effect on oxidative damage in human erythrocytes. Heliyon 2018, 4, e00805. [Google Scholar] [CrossRef]
- Acar-Tek, N.; Ağagündüz, D. Olive Leaf (Olea europaea L. folium): Potential Effects on Glycemia and Lipidemia. Ann. Nutr. Metab. 2020, 76, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Soto, E.; Koubaa, M.; Moubarik, A.; Lopes, R.P.; Saraiva, J.A.; Boussetta, N.; Grimi, N.; Barba, F.J. Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: Non-conventional methods for the recovery of high-added value compounds. Trends Food Sci. Technol. 2015, 45, 296–310. [Google Scholar] [CrossRef]
- Le Tutour, B.; Guedon, D. Antioxidative activities of Olea europaea leaves and related phenolic compounds. Phytochemistry 1992, 31, 1173–1178. [Google Scholar] [CrossRef]
- Lee, O.-H.; Lee, B.-Y.; Lee, J.; Lee, H.-B.; Son, J.-Y.; Park, C.-S.; Shetty, K.; Kim, Y.-C. Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresour. Technol. 2009, 100, 6107–6113. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Bilgin, M.; Dramur, M.U. Investigation of Oleuropein Content in Olive Leaf Extract Obtained by Supercritical Fluid Extraction and Soxhlet Methods. Sep. Sci. Technol. 2011, 46, 1829–1837. [Google Scholar] [CrossRef]
- Omar, S.H. Oleuropein in olive and its pharmacological effects. Sci. Pharm. 2010, 78, 133–154. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, P.; Masson, L.; Barriga, A.; Chávez, J.; Robert, P. Oxidative stability of oils containing olive leaf extracts obtained by pressure, supercritical and solvent-extraction. Eur. J. Lipid Sci. Technol. 2011, 113, 497–505. [Google Scholar] [CrossRef]
- Sánchez-Gutiérrez, M.; Bascón-Villegas, I.; Rodríguez, A.; Pérez-Rodríguez, F.; Fernández-Prior, Á.; Rosal, A.; Carrasco, E. Valorisation of Olea europaea L. Olive Leaves through the Evaluation of Their Extracts: Antioxidant and Antimicrobial Activity. Foods 2021, 10, 966. [Google Scholar] [CrossRef]
- Tsimidou, M.Z.; Papoti, V.T. Chapter 39—Bioactive Ingredients in Olive Leaves. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Academic Press: San Diego, CA, USA, 2010; pp. 349–356. [Google Scholar] [CrossRef]
- Bisignano, G.; Tomaino, A.; Lo Cascio, R.; Crisafi, G.; Uccella, N.; Saija, A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 1999, 51, 971–974. [Google Scholar] [CrossRef]
- Nenadis, N.; Tsimidou, M. Oleuropein and related secoiridoids. Antioxidant activity and sources other than Olea europaea L. (olive tree). Recent Prog. Med. Plants 2009, 25, 53–74. [Google Scholar]
- Lee, O.-H.; Lee, B.-Y. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresour. Technol. 2010, 101, 3751–3754. [Google Scholar] [CrossRef]
- Borjan, D.; Leitgeb, M.; Knez, Ž.; Hrnčič, M.K. Microbiological and Antioxidant Activity of Phenolic Compounds in Olive Leaf Extract. Molecules 2020, 25, 5946. [Google Scholar] [CrossRef]
- Xynos, N.; Papaefstathiou, G.; Gikas, E.; Argyropoulou, A.; Aligiannis, N.; Skaltsounis, A.-L. Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Sep. Purif. Technol. 2014, 122, 323–330. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; del Mar Contreras, M.; Espínola, F.; Moya, M.; de Torres, A.; Romero, I.; Castro, E. Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chem. 2019, 293, 161–168. [Google Scholar] [CrossRef]
- Xie, P.-J.; Huang, L.-X.; Zhang, C.-H.; You, F.; Zhang, Y.-L. Reduced pressure extraction of oleuropein from olive leaves (Olea europaea L.) with ultrasound assistance. Food Bioprod. Process. 2015, 93, 29–38. [Google Scholar] [CrossRef]
- Stamatopoulos, K.; Chatzilazarou, A.; Katsoyannos, E. Optimization of Multistage Extraction of Olive Leaves for Recovery of Phenolic Compounds at Moderated Temperatures and Short Extraction Times. Foods 2014, 3, 66–81. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Pontes, P.V.; Ayumi Shiwaku, I.; Maximo, G.J.; Caldas Batista, E.A. Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization. Food Chem. 2021, 352, 129346. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Mkaouar, S.; Bahloul, N.; Gelicus, A.; Allaf, K.; Kechaou, N. Instant controlled pressure drop texturing for intensifying ethanol solvent extraction of olive (Olea europaea) leaf polyphenols. Sep. Purif. Technol. 2015, 145, 139–146. [Google Scholar] [CrossRef]
- Abi-Khattar, A.-M.; Rajha, H.N.; Abdel-Massih, R.M.; Maroun, R.G.; Louka, N.; Debs, E. Intensification of Polyphenol Extraction from Olive Leaves Using Ired-Irrad®, an Environmentally-Friendly Innovative Technology. Antioxidants 2019, 8, 227. [Google Scholar] [CrossRef]
- Ahmad-Qasem, M.H.; Cánovas, J.; Barrajón-Catalán, E.; Micol, V.; Cárcel, J.A.; García-Pérez, J.V. Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innov. Food Sci. Emerg. Technol. 2013, 17, 120–129. [Google Scholar] [CrossRef]
- Şahin, S.; Şamlı, R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef]
- Şahin, S.; Samli, R.; Tan, A.S.B.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules 2017, 22, 1056. [Google Scholar] [CrossRef]
- Baldino, L.; Della Porta, G.; Osseo, L.S.; Reverchon, E.; Adami, R. Concentrated oleuropein powder from olive leaves using alcoholic extraction and supercritical CO2 assisted extraction. J. Supercrit. Fluids 2018, 133, 65–69. [Google Scholar] [CrossRef]
- de Lucas, A.; Martinez de la Ossa, E.; Rincón, J.; Blanco, M.A.; Gracia, I. Supercritical fluid extraction of tocopherol concentrates from olive tree leaves. J. Supercrit. Fluids 2002, 22, 221–228. [Google Scholar] [CrossRef]
- Lu, W.; Liu, S. Choline chloride–based deep eutectic solvents (Ch-DESs) as promising green solvents for phenolic compounds extraction from bioresources: State-of-the-art, prospects, and challenges. Biomass Convers. Biorefinery 2020, 12, 2949–2962. [Google Scholar] [CrossRef]
- Ünlü, A.E. Green and Non-conventional Extraction of Bioactive Compounds from Olive Leaves: Screening of Novel Natural Deep Eutectic Solvents and Investigation of Process Parameters. Waste Biomass Valorization 2021, 12, 5329–5346. [Google Scholar] [CrossRef]
- Şahin, S.; Kurtulbaş, E.; Bilgin, M. Special designed deep eutectic solvents for the recovery of high added-value products from olive leaf: A sustainable environment for bioactive materials. Prep. Biochem. Biotechnol. 2021, 51, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- García, A.; Rodríguez-Juan, E.; Rodríguez-Gutiérrez, G.; Rios, J.J.; Fernández-Bolaños, J. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 2016, 197, 554–561. [Google Scholar] [CrossRef]
- Prinos, N.; Boli, E.; Louli, V.; Pappa, G.; Magoulas, K.; Voutsas, E. Solubilities of Caffeic acid and Tyrosol in two Protic Ionic Liquids and one Deep Eutectic Solvent. Fluid Phase Equilibria 2022, 559, 113462. [Google Scholar] [CrossRef]
- Boli, E.; Katsavrias, T.; Voutsas, E. Viscosities of pure protic ionic liquids and their binary and ternary mixtures with water and ethanol. Fluid Phase Equilibria 2020, 520, 112663. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Benavente-García, O.; Castillo, J.; Lorente, J.; Ortuño, A.; Del Rio, J.A. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 2000, 68, 457–462. [Google Scholar] [CrossRef]
- Cifá, D.; Skrt, M.; Pittia, P.; Di Mattia, C.; Poklar Ulrih, N. Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Sci. Nutr. 2018, 6, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
T (K) a | ρ (g/cm3) | η (mPa·s) |
---|---|---|
293.15 | 1.1144 ± 0.0004 | 100.50 ± 2.01 |
298.15 | 1.1113 ± 0.0004 | 77.17 ± 1.54 |
303.15 | 1.1080 ± 0.0004 | 59.78 ± 1.19 |
308.15 | 1.1048 ± 0.0004 | 47.40 ± 0.95 |
313.15 | 1.1016 ± 0.0004 | 38.27 ± 0.77 |
318.15 | 1.0986 ± 0.0004 | 31.35 ± 0.63 |
323.15 | 1.0957 ± 0.0004 | 26.10 ± 0.52 |
328.15 | 1.0919 ± 0.0004 | 22.04 ± 0.44 |
333.15 | 1.0888 ± 0.0004 | 18.92 ± 0.38 |
338.15 | 1.0856 ± 0.0004 | 16.50 ± 0.33 |
343.15 | 1.0825 ± 0.0004 | 14.58 ± 0.29 |
348.15 | 1.0794 ± 0.0004 | 12.98 ± 0.26 |
353.15 | 1.0763 ± 0.0004 | 11.80 ± 0.24 |
358.15 | 1.0733 ± 0.0004 | 10.88 ± 0.22 |
363.15 | 1.0702 ± 0.0004 | 10.34 ± 0.21 |
368.15 | 1.0672 ± 0.0004 | - |
Solvent | Temperature (°C) | Mass Ratio (w/w) | Oleuropein (mg/L) | Hydroxytyrosol (mg/L) |
---|---|---|---|---|
Water | 70 | 1:20 | 563 ± 11 | ND a |
Ethanol | 55 | 1:20 | 6373 ± 127 | 20 ± 0.4 |
Ethanol | 70 | 1:20 | 7043 ± 141 | ND |
Ethanol | 70 | 1:30 | 29,580 ± 592 | ND |
ChCl:urea (1:2) | 55 | 1:20 | 1862 ± 37 | 31 ± 0.6 |
ChCl:urea (1:2) | 55 | 1:30 | 4867 ± 97 | ND |
ChCl:urea (1:2) | 70 | 1:20 | 6728 ± 135 | 246 ± 5 |
ChCl:urea (1:2)–water (70:30 w/w) | 70 | 1:20 | 5926 ± 119 | 351 ± 7 |
ChCl:urea (1:2)–ethanol (80:20 w/w) | 55 | 1:20 | 7298 ± 146 | ND |
ChCl:AA (1:2) | 55 | 1:20 | 5102 ± 102 | 54 ± 1 |
ChCl:AA (1:2) | 70 | 1:20 | 2131 ± 43 | ND |
ChCl:AA (1:2) | 55 | 1:30 | 3881 ± 78 | ND |
ChCl:AA (1:2)–water (70:30 w/w) | 55 | 1:20 | 4575 ± 92 | ND |
ChCl:AA (1:2)–ethanol (80:20 w/w) | 55 | 1:20 | 9014 ± 180 | ND |
Solvent | Temperature (°C) | Mass Ratio (w/w) | TEAC (mg Trolox/L) | TPC (mg GA/L) |
---|---|---|---|---|
Water | 70 | 1:20 | 3011 ± 60 | 3653 ± 73 |
Ethanol | 55 | 1:20 | 3007 ± 60 | 3507 ± 70 |
Ethanol | 70 | 1:20 | 3590 ± 72 | 4909 ± 98 |
Ethanol | 70 | 1:30 | 3752 ± 75 | 5554 ± 111 |
ChCl:urea (1:2) | 55 | 1:20 | 3038 ± 60 | 2081 ± 42 |
ChCl:urea (1:2) | 55 | 1:30 | 3204 ± 64 | 2487 ± 50 |
ChCl:urea (1:2) | 70 | 1:20 | 4447 ± 89 | 5744 ± 115 |
ChCl:urea (1:2)–water (70:30 w/w) | 70 | 1:20 | 4339 ± 87 | 4709 ± 95 |
ChCl:urea (1:2)–ethanol (80:20 w/w) | 55 | 1:20 | 4271 ± 85 | 4355 ± 87 |
ChCl:AA (1:2) | 55 | 1:20 | 3078 ± 62 | 3896 ± 78 |
ChCl:AA (1:2) | 70 | 1:20 | 4513 ± 90 | 4676 ± 94 |
ChCl:AA (1:2) | 55 | 1:30 | 3029 ± 61 | 3558 ± 72 |
ChCl:AA (1:2)–water (70:30 w/w) | 55 | 1:20 | 4453 ± 71 | 4344 ± 87 |
ChCl:AA (1:2)–ethanol (80:20 w/w) | 55 | 1:20 | 4989 ± 87 | 6868 ± 138 |
Temperature | Mass Ratio | Time | Irradiation Power | TEAC | TPC |
---|---|---|---|---|---|
(°C) | (w/w) | (min) | (Watt) | (mg Trolox/L) | (mg GA/L) |
40 | 1:10 | 5 | 500 | 3848 ± 77 | 4166 ± 84 |
40 | 1:10 | 5 | 750 | 3609 ± 83 | 3428 ± 69 |
40 | 1:10 | 30 | 500 | 3574 ± 72 | 3318 ± 67 |
70 | 1:10 | 30 | 500 | 4379 ± 66 | 4438 ± 89 |
40 | 1:30 | 5 | 500 | 1856 ± 38 | 1373 ± 28 |
40 | 1:30 | 30 | 750 | 1960 ± 39 | 1445 ± 29 |
40 | 1:30 | 5 | 750 | 1588 ± 32 | 1083 ± 22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boli, E.; Prinos, N.; Louli, V.; Pappa, G.; Stamatis, H.; Magoulas, K.; Voutsas, E. Recovery of Bioactive Extracts from Olive Leaves Using Conventional and Microwave-Assisted Extraction with Classical and Deep Eutectic Solvents. Separations 2022, 9, 255. https://doi.org/10.3390/separations9090255
Boli E, Prinos N, Louli V, Pappa G, Stamatis H, Magoulas K, Voutsas E. Recovery of Bioactive Extracts from Olive Leaves Using Conventional and Microwave-Assisted Extraction with Classical and Deep Eutectic Solvents. Separations. 2022; 9(9):255. https://doi.org/10.3390/separations9090255
Chicago/Turabian StyleBoli, Eleni, Nikos Prinos, Vasiliki Louli, Georgia Pappa, Haralambos Stamatis, Kostis Magoulas, and Epaminondas Voutsas. 2022. "Recovery of Bioactive Extracts from Olive Leaves Using Conventional and Microwave-Assisted Extraction with Classical and Deep Eutectic Solvents" Separations 9, no. 9: 255. https://doi.org/10.3390/separations9090255