The Regularization-Homotopy Method for the Two-Dimensional Fredholm Integral Equations of the First Kind
Abstract
:1. Introduction
2. The Regularization Method
3. The Homotopy Perturbation Method
4. The Regularization-Homotopy Method
- Apply the regularization method to transform the linear Fredholm integral equations of the first kind into second kind,
- Apply the homotopy perturbation method to find an approximate solution,
- Let the regularization parameter to obtain a solution.
5. Illustrative Examples
6. Conclusions
Conflicts of Interest
References
- Kress, R. Linear Integral Equations; Springer-Verlag: New York, NJ, USA, 1999. [Google Scholar]
- Phillips, D.L. A Technique for the Numerical Solution of Certain Integral Equations of the First Kind. J. ACM 1962, 9.1, 84–96. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Linear and Nonlinear Integral Equations; Springer-Verlag: Berlin; Heidelberg, Germany, 2011. [Google Scholar]
- Chen, J.T.; Hong, H.K. Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series. Appl. Mech. Rev. 1999, 52-1, 17–33. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Leonov, A.S.; Yagola, A.G. Nonlinear Ill-Posed Problems; Chapman Hall: London, UK, 1998; Volume 1,2. [Google Scholar]
- Bakushinsky, A.; Kokurin, A.; Simirnova, A. Iterative Methods for Ill-Posed Problems Series 54; Walter de Gruyter GmbH & Co. KG: Berlin, Germany & Newyork, NJ, USA, 2011. [Google Scholar]
- Wazwaz, A.M. The Regularization-Homotopy Method for the Linear and Non-linear Fredholm Integral Equations of the First Kind. Commun. Numer. Anal. 2011, 2011, 1–11. [Google Scholar] [CrossRef]
- Bazrafshan, F.; Mahbobi, A.H.; Neyrameh, A.; Sousaraie, A.; Ebrahimi, M. Solving two-dimensional integral equations. J. King Saud Univ. 2011, 23, 111–114. [Google Scholar] [CrossRef]
- Fallahzadeh, A. Solution of Two-Dimensional Fredholm Integral Equation via RBF-triangular Method. J. Interpolat. Approx. Sci. Comput. 2012, PIER 21, 1–5. [Google Scholar] [CrossRef]
- Molabahrami, A. An algorithm based on the regularization and integral mean value methods for the Fredholm integral equations of the first kind. Appl. Math. Model. 2013, 37, 9634–9642. [Google Scholar] [CrossRef]
- Su, C.; Sarkar, T.K. Adaptive Multiscale Moment Method for Solving Two-dimensional Fredholm Integral Equation of the First Kind. Prog. Electromagn. Res. 1999, PIER 21, 173–201. [Google Scholar] [CrossRef]
- Tari, A.; Shahmorad, S. A Computational Method for Solving Two-Dimensional Linear Fredholm Integral Equations of the Second Kind. Anziam J. 2008, 49, 543–549. [Google Scholar] [CrossRef]
- Ziyaee, F.; Tari, A. Regularization Method for the Two-dimensional Fredholm integral Equations of the First Kind. Int. J. Nonlinear Sci. 2014, 18, 189–194. [Google Scholar]
- Koshev, N.; Beilina, L. An Adaptive Finite Element Method for Fredholm Integral Equations of the First Kind and Its Verification on Experimental Data. CEJM 2013, 11, 1489–1509. [Google Scholar] [CrossRef]
- Koshev, N.; Beilina, L. A posteriori error estimates for Fredholm integral equations of the first kind. Appl. Inverse Probl. Springer Proc. Math. Stat. 2013, 48, 75–93. [Google Scholar] [CrossRef]
- Yahya, K.; Biazar, J.; Azari, H.; Fard, P.R. Homotopy Perturbation Method for Image Restoration and Denoising. 2010. Available online: http://arxiv.org/abs/1008.2579 (accessed on 16 August 2010).
- Tikhonov, A.N. On the solution of incorretly posed problem and the method of regularization. Soviet Math. 1963, 4, 1035–1038. [Google Scholar]
- Tikhonov, A.N. Regularization of incorrectly posed problems. Soviet Math Dokl. 1963, 4, 1624–1627. [Google Scholar]
- Wazwaz, A.M. The Regularization Method for Fredholm Integral Equations of the First Kind. Comput. Math. Appl. 2011, 61, 2981–2986. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Goncharsky, A.V.; Stepanov, V.V.; Yagola, A.G. Numerical Methods for the Solution of Ill Posed Problems; Springer: The Netherlands, 1995. [Google Scholar]
- Rahimi, M.Y.; Shahmorad, S.; Talati, F.; Tari, A. An Operational Method for the Numerical Solution of two-dimensional Linear Fredholm Integral Equations With an Error Estimation. Bull. Iran. Math. Soc. 2010, 36, 119–132. [Google Scholar]
- Syed, T.M.D.; Noor, M.A. Homotopy perturbation method for solving Partial differential equations. Z. Naturforsch. 2009, 64a, 157–170. [Google Scholar]
- He, J.H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Engrg. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- Laio, S. Beyond Perturbation: Introduction to Homotopy Analysis Method; Chapman Hall/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Golbabai, A.; Keramati, B. Modified homotopy perturbation method for solving Fredholm integral equations. Chaos Solitons Fractals 2008, 37, 1528–1537. [Google Scholar] [CrossRef]
- Javidi, M.; Golbabai, A. Modified homotopy perturbation method for solving nonlinear Fredholm integral equations. Chaos Solitons Fractals 2009, 4, 1408–1412. [Google Scholar] [CrossRef]
- Tari, A. Modified Homotopy Perturbation Method for Solving two-dimensional Fredholm Integral Equations. Int. J. Comput. Appl. Math. 2010, 5, 585–593. [Google Scholar]
- Lin, E.B.; Al-Jarrah, Y. Wavelet Based Methods for Numerical Solutions of two-dimensional Integral Equations. Math. Aeterna 2014, 4, 839–853. [Google Scholar]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altürk, A. The Regularization-Homotopy Method for the Two-Dimensional Fredholm Integral Equations of the First Kind. Math. Comput. Appl. 2016, 21, 9. https://doi.org/10.3390/mca21020009
Altürk A. The Regularization-Homotopy Method for the Two-Dimensional Fredholm Integral Equations of the First Kind. Mathematical and Computational Applications. 2016; 21(2):9. https://doi.org/10.3390/mca21020009
Chicago/Turabian StyleAltürk, Ahmet. 2016. "The Regularization-Homotopy Method for the Two-Dimensional Fredholm Integral Equations of the First Kind" Mathematical and Computational Applications 21, no. 2: 9. https://doi.org/10.3390/mca21020009
APA StyleAltürk, A. (2016). The Regularization-Homotopy Method for the Two-Dimensional Fredholm Integral Equations of the First Kind. Mathematical and Computational Applications, 21(2), 9. https://doi.org/10.3390/mca21020009