Image Interpolation via Scanning Line Algorithm and Discontinuous B-Spline
Abstract
:1. Introduction
1.1. PSF-Based Interpolation
1.2. Learning-Based Interpolation
1.3. Edge-Directed Interpolation
1.4. Geometry-Based Method
1.5. Polynomial-Based Interpolation
2. Interpolation
3. Algorithm and Experiment Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lehmann, T.M.; Gönner, C.; Spitzer, K. Survey: Interpolation Methods in Medical Image Processing. IEEE Trans. Med. Imaging 1999, 18, 1049–1075. [Google Scholar] [CrossRef] [PubMed]
- Acharya, T.; Tsai, P.S. Computational Foundations of Image Interpolation Algorithms. ACM Ubiquity 2007, 8, 1–17. [Google Scholar] [CrossRef]
- Chan, R.H.; Riemenschneider, S.D.; Shen, L.X.; Shen, Z.W. Tight frame: An Efficient Way for High-resolution Image Reconstruction. Appl. Comput. Harmonic Anal. 2004, 17, 91–115. [Google Scholar] [CrossRef]
- El-Khamy, S.; Hadhoud, M.; Dessouky, M.; Salam, B.; El-Samie, F.A. Efficient Implementation of Image Interpolation as an Inverse Problem. Digit. Signal Process. 2005, 15, 137–152. [Google Scholar] [CrossRef]
- Shan, Q.; Li, Z.R.; Jia, J.Y.; Tang, C.K. Fast Image/Video Upsampling. ACM Trans. Graph. 2008, 27, 1–7. [Google Scholar]
- Chang, H.; Yeung, D.Y.; Xiong, Y. Super-Resolution through Neighbor Embedding. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2004; Volume 1, pp. 275–282. [Google Scholar]
- Freeman, W.T.; Pasztor, E.C.; Carmichael, O.T. Learning Low-Level Vision. Int. J. Comput. Vis. 2000, 40, 25–47. [Google Scholar] [CrossRef]
- Kim, K.I.; Kwon, Y. Single-Image Super-Resolution Using Sparse Regression and Natural Image Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1127–1133. [Google Scholar] [PubMed]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Orchard, M.T. New Edge-Directed Interpolation. IEEE Trans. Image Process. 2001, 10, 1521–1527. [Google Scholar] [PubMed]
- Akhtar, P.; Azhar, F. A Single Image Interpolation Scheme for Enhanced Super Resolution in Bio-Medical Imaging. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), Chengdu, China, 18–20 June 2010; pp. 1–5. [Google Scholar]
- Chen, M.J.; Huang, C.H.; Lee, W.L. A Fast Edge-oriented Algorithm for Image Interpolation. Image Vis. Comput. 2005, 23, 791–798. [Google Scholar] [CrossRef]
- Su, D.; Willis, P. Image Interpolation by Pixel-Level Data-Dependent Triangulation. Comput. Graph. Forum 2004, 23, 189–201. [Google Scholar] [CrossRef]
- Liang, L.M.; Zou, B.J.; Zhao, H.X.; Qiu, X. Image Interpolation via Tangent-Control Subdivision. In Proceedings of the 2008 Congress on Image and Signal Processing, Sanya, China, 27–30 May 2008; Volume 4, pp. 102–106. [Google Scholar]
- Pan, Q.; Luo, X.N.; Zhu, J.W. A Medical Image Magnification Based on Local Geometric Similarity. J. Softw. 2009, 20, 1146–1155. [Google Scholar] [CrossRef]
- Lai, Y.K.; Hu, S.M.; Martin, R.R. Automatic and Topology-Preserving Gradient Mesh Generation for Image Vectorization. ACM Trans. Graph. (SIGGRAPH) 2009, 28, 1–8. [Google Scholar] [CrossRef]
- Demaret, L.; Dyn, N.; Iske, A. Image Compression by Linear Splines Over Adaptive Triangulations. Signal Process. 2006, 86, 1604–1616. [Google Scholar] [CrossRef]
- Liu, C.M.; Luo, X.N. Image enlargement via interpolatory subdivision. IET Image Process. 2011, 5, 567–571. [Google Scholar] [CrossRef]
- Keys, R.G. Cubic Convolution Interpolation for Digital Image Processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef]
- Liang, L.M. Image Interpolation by Blending Kernels. IEEE Signal Process. Lett. 2008, 15, 805–808. [Google Scholar] [CrossRef]
- Shi, J.Z.; Reichenbach, S.E. Image Interpolation by Two-Dimensional Parametric Cubic Convolution. IEEE Trans. Image Process. 2006, 15, 1857–1870. [Google Scholar] [PubMed]
- Van Damme, R.; Wang, R.H. Curve Interpolation with Constrained Length. Computing 1995, 54, 69–81. [Google Scholar] [CrossRef]
- Roulier, J.A.; Piper, B. Prescribing the Length of Parametric Curves. Comput. Aided Geom. Des. 1996, 13, 3–22. [Google Scholar] [CrossRef]
- Levin, A. Combined subdivision schemes for the design of surfaces satisfying boundary conditions. Comput. Aided Geom. Des. 1999, 16, 345–354. [Google Scholar] [CrossRef]
- Biermann, H.; Levin, A.; Zorin, D. Piecewise smooth subdivision surfaces with normal control. In Proceedings of the 27th annual conference on computer graphics and interactive techniques, New Orleans, LA, USA, 23–28 July 2000; pp. 113–120. [Google Scholar]
- Nasri, A.H. Recursive subdivision of polygonal complexes and its applications in computer-aided geometric design. Comput. Aided Geom. Des. 2000, 17, 595–619. [Google Scholar] [CrossRef]
- Nasri, A.H.; Abbas, A. Designing Catmull-Clark subdivision surfaces with curve interpolation constraints. Comput. Graph. 2002, 26, 393–400. [Google Scholar] [CrossRef]
- Piegl, L.; Tiller, W. The NURBS Book, 2nd ed.; Springer: New York, NY, USA, 1997. [Google Scholar]
- Li, X. New Edge Direction Interpolation. 2001. Available online: http://www.csee.wvu.edu/~xinl/publications.html (accessed on 19 July 2013).
- Shan, Q.; Li, Z.; Jia, J.; Tang, C.K. Fast Image/Video Upsampling. 2008. Available online: http://www.cse.cuhk.edu.hk/~leojia/projects/upsampling/index.html (accessed on 11 August 2011).
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Kodak. Kodak Lossless True Color Image Suite. Available online: http://r0k.us/graphics/kodak/ (accessed on 1 June 2011).
Bilinear | NEDI | Upsampling | Interpolation | |
---|---|---|---|---|
baboon | 24.684 | 24.072 | 24.576 | 25.168 |
kodim05 | 23.817 | 23.545 | 23.878 | 24.269 |
kodim23 | 31.334 | 30.828 | 31.039 | 32.234 |
Bilinear | NEDI | Upsampling | Interpolation | |
---|---|---|---|---|
baboon | 0.7245 | 0.7041 | 0.7448 | 0.7670 |
kodim05 | 0.7370 | 0.7281 | 0.7534 | 0.7689 |
kodim23 | 0.9249 | 0.9207 | 0.9185 | 0.9335 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-m.; Wang, Z.-k.; Pang, H.-b.; Xue, J.-x. Image Interpolation via Scanning Line Algorithm and Discontinuous B-Spline. Math. Comput. Appl. 2017, 22, 34. https://doi.org/10.3390/mca22020034
Liu C-m, Wang Z-k, Pang H-b, Xue J-x. Image Interpolation via Scanning Line Algorithm and Discontinuous B-Spline. Mathematical and Computational Applications. 2017; 22(2):34. https://doi.org/10.3390/mca22020034
Chicago/Turabian StyleLiu, Cheng-ming, Ze-kun Wang, Hai-bo Pang, and Jun-xiao Xue. 2017. "Image Interpolation via Scanning Line Algorithm and Discontinuous B-Spline" Mathematical and Computational Applications 22, no. 2: 34. https://doi.org/10.3390/mca22020034
APA StyleLiu, C.-m., Wang, Z.-k., Pang, H.-b., & Xue, J.-x. (2017). Image Interpolation via Scanning Line Algorithm and Discontinuous B-Spline. Mathematical and Computational Applications, 22(2), 34. https://doi.org/10.3390/mca22020034