On Determination of Wave Velocities through the Eigenvalues of Material Objects
Abstract
:1. Introduction
2. Statement of Eigenvalue Problem of a Tensor–Block Matrix of Any Even Rank
3. Kinematic and Dynamic Conditions on the Surface of a Strong Discontinuity in Micropolar Mechanics
3.1. Kinematic Conditions on the Surface of a Strong Discontinuity
3.2. Laws of Conservation of Mass and the Tensor of Moments of Inertia at the Wave Front
3.3. Dynamic Conditions on the Wave Front
4. Determination of Wave Propagation Velocities in an Infinite Micropolar Solid
5. Application
5.1. Classical Materials with Anisotropy Symbols and
5.2. Classical Material with the Anisotropy Symbol (Cubic Symmetry)
5.3. Classical Material with the Anisotropy Symbol (Transversal Isotropy)
5.4. Micropolar Material with a Center of Symmetry and the Anisotropy Symbol
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Poruchikov, V.B. Methods of the Dynamic Theory of Elasticity; Nauka: Moscow, Russia, 1986. (In Russian) [Google Scholar]
- Strett, D.V. Teoriya Zvuka; Book on Demand Ltd.: Moscow, Russia, 1955; pp. 1–2. (In Russian) [Google Scholar]
- Timoshenko, S.P. Kolebaniya v Inzhenernom Dele; Fizmatgiz: Moscow, Russia, 1959. (In Russian) [Google Scholar]
- Uflyand, Y.S. Rasprostraneniye voln pri poperechnykh kolebaniyakh sterzhney i plastin. Prikl. Matem. Mekhan. 1948, 12, 3. (In Russian) [Google Scholar]
- Novozhilov, V.V.; Slepyan, L.I. On Saint-Venant’s principle in the dynamics of beams. J. Appl. Math. Mech. 1965, 29, 293–315. [Google Scholar] [CrossRef]
- Slepyan, L.I. Non-Stationary Elastic Waves; Sudostroenie: Saint-Petersburg, Russia, 1972. (In Russian) [Google Scholar]
- Rosi, G.; Placidi, L.; dell’Isola, F. “First” and “slow” pressure waves electrically induced by nonlinear coupling in Biot-type porous medium saturated by a nematic liquid crystal. Zeitschrift für Angewandte Mathematik und Physik 2017, 68, 51. [Google Scholar] [CrossRef]
- dell’Isola, F.; Madeo, A.; Placidi, L. Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. Zeitschrift für Angewandte Mathematik und Mechanik 2012, 92, 52–71. [Google Scholar] [CrossRef]
- Rosi, G.; Auffrey, N. Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 2016, 63, 120–134. [Google Scholar] [CrossRef]
- Sobolev, S.L. Nekotoryye voprosy teorii rasprostraneniya kolebaniy. In Differentsialnyye i Integralnyye Uravneniya Matematicheskoy Fiziki; Frank, F., Mises, R., Eds.; ONTI: Leningrad, Moscow, 1937. (In Russian) [Google Scholar]
- Lamb, H. On the propagation of tremors over the surface on an elastic solid. Proc. R. Soc. Lond. A 1903, 72, 128–130. [Google Scholar] [CrossRef]
- Nikabadze, M.U. Development of the Method of Orthogonal Polynomials in the Classical and Micropolar Mechanics of Elastic Thin Bodies; Moscow University Press: Moscow, Russia, 2014. (In Russian) [Google Scholar]
- Nikabadze, M.U.; Ulukhanyan, A.R. Some Applications of Eigenvalue Problems for Tensor and Tensor Block Matrices for Mathematical Modeling of Micropolar Thin Bodies. Math. Comput. Appl. 2019, 24, 33. [Google Scholar] [CrossRef]
- Nikabadze, M.U.; Ulukhanyan, A.R. Modeling of multilayer thin bodies. Contin. Mech. Thermodyn. 2019, 31, 1–26. [Google Scholar] [CrossRef]
- Nikabadze, M.U. Topics on tensor calculus with applications to mechanics. J. Math. Sci. 2017, 225, 1–194. [Google Scholar] [CrossRef]
- Luré, A.I. Nonlinear Elasticity; Nauka: Moscow, Russia, 1980. (In Russian) [Google Scholar]
- Nikabadze, M.U. On Some Issues of Tensor Calculus with Applications to Mechanics. Contemp. Math. Fundam. Direct. 2015, 55, 3–194. [Google Scholar]
- Pobedrya, B.E. Numerical Methods in the Theory of Elasticity and Plasticity, 2nd ed.; Moscow State University: Moskva, Russia, 1995; 366p. (In Russian) [Google Scholar]
- Vekua, I.N. Fundamentals of Tensor Analysis and Covariant Theory; Nauka: Moscow, Russia, 1978. (In Russian) [Google Scholar]
- Pobedrya, B.E. Lectures in Tensor Analysis; Moscow State University: Moskva, Russia, 1986. (In Russian) [Google Scholar]
- Petrashen, G.I. Basics of the mathematical theory of the propagation of elastic waves. In Issues of Dynamic Propagation of Seismic Waves; Nauka: Moscow, Russia, 1978; 248p. (In Russian) [Google Scholar]
- Petrashen, G.I. Propagation of Waves in Anisotropic Elastic Media; Nauka: Leningrad, Russia, 1980; 280p. (In Russian) [Google Scholar]
- Sagomonyan, A.Y. Stress Waves in Continuous Media; Moscow University Press: Moscow, Russia, 1985; 416p. (In Russian) [Google Scholar]
- Eringen, A.C. Microcontinuum Field Theories I. Foundations and Solids; Springer: New York, NY, USA, 1999; 340p. [Google Scholar]
- Kupradze, V.D.; Gegelia, T.G.; Basheleishvili, M.O.; Burchuladze, T.V. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity; Nauka: Moscow, Russia, 1976; 664p. (In Russian) [Google Scholar]
- Nowacki, W. Theory of Elasticity; Mir: Moscow, Russia, 1975; 872p. (In Russian) [Google Scholar]
- Nikabadze, M.U. Some issues concerning a version of the theory of thin solids based on expansions in a system of Chebyshev polynomials of the second kind. Mech. Solids 2007, 42, 391–421. [Google Scholar] [CrossRef]
- Nikabadze, M.U.; Ulukhanyan, A.R. Analytical Solutions in the Theory of Thin Bodies. In Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials; Altenbach, H., Forest, S., Eds.; Springer: Cham, Switzerland, 2016; Volume 42, pp. 319–361. [Google Scholar]
- Baskakov, V.A.; Bestuzheva, N.P.; Konchakova, N.A. Linear Dynamic Theory of Thermoelastic Medium with Microstructure; Voronezh University Press: Voronezh, Russia, 2001; 162p. [Google Scholar]
- Nikabadze, M.U. Construction of Eigentensor Columns in the Linear Micropolar Theory of Elasticity. Mosc. Univ. Mech. Bull. 2014, 69, 1–9. [Google Scholar] [CrossRef]
- Nikabadze, M.U. Eigenvalue Problems of a Tensor and a Tensor-Block Matrix (TMB) of Any Even Rank with Some Applications in Mechanics. In Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials; Altenbach, H., Forest, S., Eds.; Springer: Cham, Switzerland, 2016; pp. 279–317. [Google Scholar]
- Nikabadze, M.U. To the problem of decomposition of the initial boundary value problems in mechanics. J. Phys. Conf. Ser. 2017, 739, 012056. [Google Scholar] [CrossRef]
- Ulukhanyan, A.R. The Dispersive Equations and Velocities of Propagation of Waves in the Couple Theory. Available online: https://www.researchgate.net/publication/318300021_Dispersionnye_uravnenia_i_skorosti_rasprostranenia_voln_v_momentnoj_teorii_The_Dispersive_Equations_and_Velocities_of_Propagation_of_Waves_in_the_Couple_Theory (accessed on 10 April 2019). (In Russian).
- Matevossian, H.; Nikabadze, M.; Ulukhanian, A. Determination of velocities of wave propagation in some media through the eigenvalues of the material tensors. J. Phys. Conf. Ser. 2018, 1141, 012154. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikabadze, M.U.; Lurie, S.A.; Matevossian, H.A.; Ulukhanyan, A.R. On Determination of Wave Velocities through the Eigenvalues of Material Objects. Math. Comput. Appl. 2019, 24, 39. https://doi.org/10.3390/mca24020039
Nikabadze MU, Lurie SA, Matevossian HA, Ulukhanyan AR. On Determination of Wave Velocities through the Eigenvalues of Material Objects. Mathematical and Computational Applications. 2019; 24(2):39. https://doi.org/10.3390/mca24020039
Chicago/Turabian StyleNikabadze, Mikhail U., Sergey A. Lurie, Hovik A. Matevossian, and Armine R. Ulukhanyan. 2019. "On Determination of Wave Velocities through the Eigenvalues of Material Objects" Mathematical and Computational Applications 24, no. 2: 39. https://doi.org/10.3390/mca24020039
APA StyleNikabadze, M. U., Lurie, S. A., Matevossian, H. A., & Ulukhanyan, A. R. (2019). On Determination of Wave Velocities through the Eigenvalues of Material Objects. Mathematical and Computational Applications, 24(2), 39. https://doi.org/10.3390/mca24020039