Nadarajah–Haghighi Lomax Distribution and Its Applications
Abstract
:1. Introduction
2. NHLx Distribution
3. Moment Properties of the NHLx Distribution
- The rth moment of X about the mean can be expressed asBased on it, the standard moment skewness measure is defined by , and the standard moment kurtosis measure is defined by , among other moment measures.
- The rth unconditional moment of X at a certain can be expanded asIt is immediate that . The unconditional moments are useful in the expression of various important functions, such as the mean residual life and reversed mean residual life functions. For more information on these functions, see [29].
4. Maximum Likelihood Estimates of the Parameters
5. Simulation Study
6. Applications of the NHLx Model
6.1. Heavy-Tailed Data Applications
6.2. Practical Applications
7. Conclusions
- the development of various extensions, such as parametric-functional, multivariate, and discrete versions;
- the creation of new families of distributions;
- the construction of diverse regression models;
- by viewing the related cdf as a sigmoidal function, one can think of studying the “confidential intervals” (or “confidential bounds”) and “supersaturation” to the horizontal asymptote (at the median level) in the Hausdorff sense (see [37]). These two characteristics are important for researchers in choosing an appropriate model for approximating specific data from very different branches of scientific knowledge, such as computer virus propagation (see [38]).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pareto, V. Cours d’Économie Politique; Rouge: Lausanne, Switzerland, 1897; Volume II. [Google Scholar]
- Lomax, K. Business failures: Another example of the analysis of failure data. J. Am. Stat. Assoc. 1954, 49, 847–852. [Google Scholar] [CrossRef]
- Harris, C.M. The Pareto distribution as a queue service discipline. Oper. Res. 1968, 16, 307–313. [Google Scholar] [CrossRef]
- Atkinson, A.B.; Harrison, A.J. Distribution of Personal Wealth in Britain; Cambridge University Press: Cambridge, UK, 1978. [Google Scholar]
- Bryson, M.C. Heavy-tailed distributions: Properties and tests. Technometrics 1974, 16, 61–68. [Google Scholar] [CrossRef]
- Lingappaiah, G. Bayes prediction in exponential life-testing when sample size is a random variable. IEEE Trans. Reliab. 1986, 35, 106–110. [Google Scholar] [CrossRef]
- Ahsanullah, M. Record values of the Lomax distribution. Stat. Neerl. 1991, 45, 21–29. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Ahsanullah, M. Relations for single and product moments of record values from Lomax distribution. Sankhya Indian J. Stat. Ser. B 1994, 56, 140–146. [Google Scholar]
- Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 1997, 84, 641–652. [Google Scholar] [CrossRef]
- Chahkandi, M.; Ganjali, M. On some lifetime distributions with decreasing failure rate. Comput. Stat. Data Anal. 2009, 53, 4433–4440. [Google Scholar] [CrossRef]
- Abdul-Moniem, I.B. Recurrence relations for moments of lower generalized order statistics from Exponentiated Lomax Distribution and its characterization. J. Math. Comput. Sci. 2012, 2, 999–1011. [Google Scholar]
- Rajab, M.; Aleem, M.; Nawaz, T.; Daniyal, M. On Five Parameter Beta Lomax Distribution. J. Stat. 2013, 20, 102–118. [Google Scholar]
- Al-Jarallah, R.A.; Ghitany, M.E.; Gupta, R.C. A proportional hazard Marshall–Olkin extended family of distributions and its application to Gompertz distribution. Commun. Stat. Theory Methods 2014, 43, 4428–4443. [Google Scholar] [CrossRef]
- El-Bassiouny, A.H.; Abdo, N.F.; Shahen, H.S. Exponential Lomax Distribution. Int. J. Comput. Appl. 2015, 121, 24–29. [Google Scholar]
- Cordeiro, G.M.; Ortega, E.M.; Popovic, B.V. The Gamma–Lomax Distribution. J. Stat. Comput. Simul. 2015, 85, 305–319. [Google Scholar] [CrossRef]
- Tahir, M.H.; Cordeiro, G.M.; Mansoor, M.; Zubair, M. The Weibull–Lomax distribution: Properties and applications. Hacet. J. Math. Stat. 2015, 44, 455–474. [Google Scholar] [CrossRef]
- Mead, M.E. On five-parameter Lomax distribution: Properties and applications. Pak. J. Stat. Oper. Res. 2016, 12, 185–200. [Google Scholar]
- Rady, E.H.A.; Hassanein, W.A.; Elhaddad, T.A. The power Lomax distribution with an application to bladder cancer data. SpringerPlus 2016, 5, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.S.; Abd-Allah, M. Exponentiated Weibull–Lomax distribution: Properties and estimation. J. Data Sci. 2018, 16, 277–298. [Google Scholar] [CrossRef]
- Nagarjuna, B.V.; Vishnu Vardhan, R. Marshall–Olkin exponential Lomax distribution: Properties and its application. Stoch. Model. Appl. 2020, 24, 161–177. [Google Scholar]
- Al-Marzouki, S.; Jamal, F.; Chesneau, C.; Elgarhy, M. Type II Topp–Leone power Lomax distribution with applications. Mathematics 2020, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Mathew, J.; Chesneau, C. Some new contributions on the Marshall–Olkin length biased Lomax distribution: Theory, modelling and data analysis. Math. Comput. Appl. 2020, 25, 79. [Google Scholar] [CrossRef]
- Nagarjuna, B.V.; Vishnu Vardhan, R.; Chesneau, C. Kumaraswamy Generalized Power Lomax Distribution and Its Applications. Stats 2021, 4, 28–45. [Google Scholar] [CrossRef]
- Nagarjuna, B.V.; Vishnu Vardhan, R.; Chesneau, C. On the Accuracy of the Sine Power Lomax Model for Data Fitting. Modelling 2021, 2, 78–104. [Google Scholar] [CrossRef]
- Murthy, D.N.P.; Xie, M.; Jiang, R. Weibull Models; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Nadarajah, S.; Haghighi, F. An extension of the exponential distribution. Statistics 2011, 45, 543–558. [Google Scholar] [CrossRef]
- Gilchrist, W.G. Statistical Modelling with Quantile Functions; Chapman & Hall/CRC: London, UK, 2000. [Google Scholar]
- Koenker, R. Quantile Regression; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Cordeiro, G.M.; Silva, R.B.; Nascimento, A.D.C. Recent Advances in Lifetime and Reliability Models; Bentham Books: Sharjah, United Arab Emirates, 2020. [Google Scholar] [CrossRef]
- Casella, G.; Berger, R.L. Statistical Inference; Brooks/Cole Publishing Company: Pacific Grove, CA, USA, 1990. [Google Scholar]
- Boland, P.J. Statistical and Probabilistic Methods in Actuarial Science; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- da Silva, R.V.; de Andrade, T.A.; Maciel, D.B.; Campos, R.P.; Cordeiro, G.M. A New Lifetime Model: The Gamma Extended Fréchet Distribution. J. Stat. Theory Appl. 2013, 12, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Pinho, L.G.B.; Cordeiro, G.M.; Nobre, J.S. The Harris extended exponential distribution. Commun. Stat. Theory Methods 2015, 44, 3486–3502. [Google Scholar] [CrossRef]
- Kang, I.; Hudson, I.; Rudge, A.; Chase, J.G. Density estimation and wavelet thresholding via Bayesian methods: A wavelet probability band and related metrics approach to assess agitation and sedation in ICU patients. In Discrete Wavelet Transforms—A Compendium of New Approaches and Recent Applications; IntechOpen: London, UK, 2013. [Google Scholar]
- Khan, M.S.; King, R.; Hudson, I.L. Transmuted generalized exponential distribution: A generalization of the exponential distribution with applications to survival data. Commun. Stat. Simul. Comput. 2017, 46, 4377–4398. [Google Scholar] [CrossRef]
- Chen, G.; Balakrishnan, N. A general purpose approximate goodness-of-fit test. J. Qual. Technol. 1995, 27, 154–161. [Google Scholar] [CrossRef]
- Sendov, B. Hausdorff Approximations; Kluwer: Boston, MA, USA, 1990. [Google Scholar]
- Iliev, A.; Kyurkchiev, N.; Rahnev, A.; Terzieva, T. Some Models in the Theory of Computer Viruses Propagation; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2019. [Google Scholar]
n | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MMLE | Bias | MSE | MMLE | Bias | MSE | MMLE | Bias | MSE | MMLE | Bias | MSE | |
Set I | ||||||||||||
50 | 2.4691 | 1.9691 | 13.3180 | 2.9450 | 1.4450 | 54.9364 | 9.2113 | 4.2113 | 310.9836 | 0.7425 | 0.2425 | 1.2292 |
100 | 1.9081 | 1.4081 | 3.6890 | 2.4782 | 0.9782 | 40.3076 | 6.9163 | 1.9163 | 128.6739 | 0.5886 | 0.0886 | 0.4186 |
250 | 1.5403 | 1.0403 | 2.0234 | 1.8814 | 0.3814 | 7.3395 | 6.0152 | 1.0152 | 58.5405 | 0.5465 | 0.0465 | 0.1517 |
500 | 1.2723 | 0.7723 | 0.9669 | 1.6510 | 0.1510 | 2.3173 | 5.3303 | 0.3303 | 11.0218 | 0.5143 | 0.0143 | 0.0322 |
750 | 1.1679 | 0.6679 | 0.6544 | 1.5840 | 0.0840 | 0.8996 | 5.1302 | 0.1302 | 2.9589 | 0.5053 | 0.0053 | 0.0090 |
1000 | 1.1355 | 0.6355 | 0.5534 | 1.5507 | 0.0507 | 0.6974 | 5.1039 | 0.1039 | 2.2337 | 0.5046 | 0.0046 | 0.0067 |
Set II | ||||||||||||
50 | 2.4179 | 1.9179 | 6.9777 | 3.2423 | 1.7423 | 170.7508 | 6.0725 | 2.0725 | 268.0909 | 0.8891 | 0.1391 | 1.7534 |
100 | 2.0139 | 1.5139 | 4.3307 | 2.3196 | 0.8196 | 34.8643 | 4.3855 | 0.3855 | 28.9119 | 0.7571 | 0.0071 | 0.1972 |
250 | 1.5278 | 1.0278 | 1.8965 | 1.7518 | 0.2518 | 6.5711 | 4.1402 | 0.1402 | 6.6622 | 0.7548 | 0.0048 | 0.0465 |
500 | 1.2650 | 0.7650 | 0.9185 | 1.6067 | 0.1067 | 1.7551 | 4.0561 | 0.0561 | 2.5538 | 0.7509 | 0.0009 | 0.0198 |
750 | 1.1526 | 0.6526 | 0.5826 | 1.5615 | 0.0615 | 1.0451 | 3.9887 | −0.0113 | 1.1312 | 0.7459 | −0.0041 | 0.0083 |
1000 | 1.1297 | 0.6297 | 0.5391 | 1.5262 | 0.0262 | 0.5502 | 3.9882 | −0.0118 | 0.6922 | 0.7470 | −0.0030 | 0.0054 |
Set III | ||||||||||||
50 | 2.6338 | 1.1338 | 6.5559 | 0.6993 | 0.1993 | 18.5802 | 5.2280 | 1.2280 | 246.0191 | 0.5697 | 0.0697 | 1.6784 |
100 | 2.0040 | 0.5040 | 2.9493 | 0.5758 | 0.0758 | 1.3542 | 4.7413 | 0.7413 | 46.4162 | 0.5341 | 0.0341 | 0.1676 |
250 | 1.5413 | 0.0413 | 1.1911 | 0.4969 | 0.1653 | 4.1298 | 0.1298 | 8.1507 | 0.5022 | 0.0022 | 0.0432 | |
500 | 1.2694 | 0.4318 | 0.4946 | 0.0944 | 4.0379 | 0.0379 | 2.6806 | 0.4975 | 0.0139 | |||
750 | 1.1916 | −0.3084 | 0.2963 | 0.4779 | −0.0221 | 0.0413 | 3.9693 | −0.0307 | 0.9247 | 0.4957 | −0.0043 | 0.0055 |
1000 | 1.1182 | −0.3818 | 0.2738 | 0.4934 | −0.0066 | 0.0286 | 3.9998 | −0.0002 | 0.6297 | 0.4989 | −0.0011 | 0.0038 |
Models (Theft Data) | |||
---|---|---|---|
NHLx | 0.12090 | 0.10840 | 0.07531 |
lognormal | 0.05972 | 0.04418 | 0.01536 |
Weibull | 0.03970 | 0.02270 | 0.00200 |
gamma | 0.03755 | 0.01897 | 0.00070 |
exponential | 1.9067 × | 7.0851 × | 5.0197 × |
(Claim data) | |||
NHLx | 0.94477 | 0.86505 | 0.73682 |
Weibull | 0.370878 | 0.19394 | 0.08713 |
gamma | 0.34625 | 0.19193 | 0.10045 |
lognormal | 0.32961 | 0.20544 | 0.13060 |
exponential | 0.32557 | 0.23171 | 0.16491 |
Data Sets | Mean | Median | Skewness | Kurtosis |
---|---|---|---|---|
Eruption data | 46.5486 | 29.3811 | 47.9415 | 43.2141 |
ICU data | 19.9494 | 12.5919 | 47.9426 | 43.2148 |
Data Sets | Models | a | b | ||
---|---|---|---|---|---|
Eruption data | NHLx | 0.1052 | 0.0095 | 6.0546 | 7 |
(0.0246) | (0.0080) | (1.2023) | (-) | ||
WL | 1.9842 | 2.9883 | 0.1915 | 2.0231 | |
(3.8721) | (2.8437) | (0.1422) | (8.2844) | ||
EXL | - | 1.5369 | 0.0452 | 7 | |
(0.1418) | (0.0016) | (-) | |||
Lx | - | - | 1.8007 | 46.7964 | |
(0.4426) | (13.9539) | ||||
ICU data | NHLx | 0.0886 | 0.0132 | 8.0704 | 3 |
(0.0443) | (0.0381) | (4.2954) | (-) | ||
WL | 4.3066 | 1.6119 | 0.2584 | 3.7699 | |
(5.4222) | (0.4737) | (0.1369) | (4.7682) | ||
EXL | - | 1.4432 | 0.0951 | 3 | |
(0.1743) | (0.0366) | (-) | |||
Lx | - | - | 2.7744 | 21.0499 | |
(1.2094) | (10.8889) |
Models | W* | A* | D | p-Value | AIC | CAIC | BIC | HQIC |
---|---|---|---|---|---|---|---|---|
Eruption data | ||||||||
NHLx | 0.0998 | 0.7471 | 0.0761 | 0.8520 | 592.9289 | 593.3289 | 599.4056 | 595.4804 |
WL | 0.1119 | 0.8036 | 0.1062 | 0.4656 | 597.1462 | 597.8242 | 605.7818 | 600.5482 |
EXL | 0.2213 | 1.4388 | 0.1230 | 0.2873 | 607.4000 | 607.5968 | 611.7178 | 609.101 |
Lx | 0.1182 | 0.8570 | 0.2317 | 0.0021 | 619.4907 | 619.6874 | 623.8085 | 621.1917 |
ICU data | ||||||||
NHLx | 0.2666 | 1.7021 | 0.2047 | 0.0905 | 242.5222 | 243.2495 | 247.355 | 244.226 |
WL | 0.3459 | 2.1002 | 0.2071 | 0.0838 | 252.6803 | 253.9303 | 259.124 | 254.952 |
EXL | 0.547 | 3.044 | 0.2266 | 0.0448 | 264.4479 | 264.8008 | 267.6697 | 265.5837 |
Lx | 0.3404 | 2.0824 | 0.3091 | 0.0017 | 256.5615 | 256.9144 | 259.7833 | 257.6973 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagarjuna, V.B.V.; Vardhan, R.V.; Chesneau, C. Nadarajah–Haghighi Lomax Distribution and Its Applications. Math. Comput. Appl. 2022, 27, 30. https://doi.org/10.3390/mca27020030
Nagarjuna VBV, Vardhan RV, Chesneau C. Nadarajah–Haghighi Lomax Distribution and Its Applications. Mathematical and Computational Applications. 2022; 27(2):30. https://doi.org/10.3390/mca27020030
Chicago/Turabian StyleNagarjuna, Vasili B. V., Rudravaram Vishnu Vardhan, and Christophe Chesneau. 2022. "Nadarajah–Haghighi Lomax Distribution and Its Applications" Mathematical and Computational Applications 27, no. 2: 30. https://doi.org/10.3390/mca27020030
APA StyleNagarjuna, V. B. V., Vardhan, R. V., & Chesneau, C. (2022). Nadarajah–Haghighi Lomax Distribution and Its Applications. Mathematical and Computational Applications, 27(2), 30. https://doi.org/10.3390/mca27020030