An Efficient Two-Step Iterative Family Adaptive with Memory for Solving Nonlinear Equations and Their Applications
Abstract
:1. Introduction
2. Iterative Method without Memory and Its Convergence Analysis
Convergence Analysis
3. Iterative Method with Memory and Its Convergence Analysis
Convergence Analysis
4. Numerical Results
- having one of the real zero .
- having one of the real zero 0.
- having one of the real zero 2.
- having one of the real zero .
- having one of the real zero .
5. Basins of Attraction
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Amat, S.; Busquier, S.; Gutiérrez, J.M. Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 2003, 157, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K. A note on the Halley method in Banach spaces. Appl. Math. Comput. 1993, 58, 215–224. [Google Scholar]
- Argyros, I.K.; Kansal, M.; Kanwar, V.; Bajaj, S. Higher-order derivative-free families of Chebyshev–Halley type methods with or without memory for solving nonlinear equations. Appl. Math. Comput. 2017, 315, 224–245. [Google Scholar] [CrossRef]
- Cordero, A.; Moscoso-Martinez, M.; Torregrosa, J.R. Chaos and stability in a new iterative family for solving nonlinear equations. Algorithms 2021, 14, 101. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Hernández, M.A. A family of Chebyshev–Halley type methods in Banach spaces. Bull. Austral. Math. Soc. 1997, 55, 113–130. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Chand, P.B. Derivative free iterative methods with memory having R-order of convergence. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 641–648. [Google Scholar] [CrossRef]
- Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
- Hansen, E.; Patrick, M. A family of root finding methods. Numer. Math. 1977, 27, 257–269. [Google Scholar] [CrossRef]
- Petković, M.S.; Neta, B.; Petković, L.D.; Dẑunić, J. Multipoint methods for solving nonlinear equations: A survey. Appl. Math. Comput. 2014, 226, 635–660. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.R.; Guha, R.K.; Sharma, R. Some variants of Hansen–Patrick method with third and fourth order convergence. Appl. Math. Comput. 2009, 214, 171–177. [Google Scholar] [CrossRef]
- Kansal, M.; Kanwar, V.; Bhatia, S. New modifications of Hansen–Patrick’s family with optimal fourth and eighth orders of convergence. Appl. Math. Comput. 2015, 269, 507–519. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, J.; Huang, F. An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 2011, 217, 9592–9597. [Google Scholar] [CrossRef]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solutions of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Sihwail, R.; Solaiman, O.S.; Ariffin, K.A.Z. New robust hybrid Jarratt–Butterfly optimization algorithm for nonlinear models. J. King Saud Univ. Comput. Inform. Sci. 2022; in press. [Google Scholar] [CrossRef]
- Sihwail, R.; Solaiman, O.S.; Omar, K.; Ariffin, K.A.Z.; Alswaitti, M.; Hashim, I. A hybrid approach for solving systems of nonlinear equations using harris hawks optimization and Newton’s method. IEEE Access 2021, 9, 95791–95807. [Google Scholar] [CrossRef]
- King, R.F. A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 1973, 10, 876–879. [Google Scholar] [CrossRef]
- Soleymani, F.; Lotfi, T.; Tavakoli, E.; Haghani, F.K. Several iterative methods with memory using self-accelerators. Appl. Math. Comput. 2015, 254, 452–458. [Google Scholar] [CrossRef]
- Campos, B.; Cordero, A.; Torregrosa, J.R.; Vindel, P. Stability of King’s family of iterative methods with memory. J. Comput. Appl. Math. 2017, 318, 504–514. [Google Scholar] [CrossRef] [Green Version]
- Jay, I.O. A note on Q-order of convergence. BIT Numer. Math. 2011, 41, 422–429. [Google Scholar] [CrossRef]
- Jain, D. Families of Newton-like method with fourth-order convergence. Int. J. Comput. Math. 2013, 90, 1072–1082. [Google Scholar] [CrossRef]
- Bradie, B. A Friendly Introduction to Numerical Analysis; Pearson Education Inc.: New Delhi, India, 2006. [Google Scholar]
- Shacham, M. Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Methods Eng. 1986, 23, 1455–1481. [Google Scholar] [CrossRef]
- Zachary, J.L. Introduction to Scientific Programming: Computational Problem Solving Using Maple and C; Springer: New York, NY, USA, 2012. [Google Scholar]
Without Memory Methods | CPU Time | ||||
---|---|---|---|---|---|
() | 1.1717 | 3.0000 | 0.344 | ||
() | 3.0000 | 0.312 | |||
() | 3.0000 | 0.329 | |||
() | 2.9993 | 0.343 | |||
() | 3.0008 | 0.344 | |||
() | 2.9990 | 0.281 | |||
() | 2.9961 | 0.578 | |||
() | 2.9946 | 0.656 | |||
() | 2.9950 | 0.749 | |||
() | 2.7546 | 0.594 | |||
() | 2.7518 | 0.843 | |||
() | 3.1314 | 0.751 | |||
() | 3.0008 | 0.345 | |||
() | 2.9971 | 0.344 | |||
() | 3.0019 | 0.359 | |||
() | 2.9994 | 0.358 | |||
() | 3.0020 | 0.328 | |||
() | 2.9993 | 0.390 | |||
() | 2.8943 | 0.250 | |||
() | 2.7963 | 0.266 | |||
() | 2.7547 | 0.328 | |||
() | F | F | F | # | - |
() | F | F | F | # | - |
() | F | F | F | # | - |
() | 3.1821 | 0.422 | |||
() | 3.5597 | 0.406 | |||
() | 3.4779 | 0.328 | |||
() | C | C | C | * | - |
() | C | C | C | * | - |
() | C | C | C | * | - |
With Memory Methods | CPU Time | ||||
---|---|---|---|---|---|
() | 3.3435 | 0.407 | |||
() | 3.3362 | 0.407 | |||
() | 3.3434 | 0.344 | |||
() | 2.4151 | 0.343 | |||
() | 2.0037 | 0.312 | |||
() | 3.6558 | 0.859 | |||
() | 3.6119 | 0.875 | |||
() | 3.6550 | 0.938 | |||
() | 2.4624 | 0.672 | |||
() | 1.9291 | 0.657 | |||
() | 3.4661 | 0.516 | |||
() | 3.4917 | 0.468 | |||
() | 3.4628 | 0.422 | |||
() | 2.4298 | 0.313 | |||
() | 2.1886 | 0.297 | |||
() | 3.4326 | 0.250 | |||
() | 3.2771 | 0.250 | |||
() | 3.2331 | 0.296 | |||
() | 0.359 | ||||
() | 0.282 | ||||
() | 4.2117 | 0.360 | |||
() | 6.8399 | 0.421 | |||
() | 4.0907 | 0.485 | |||
() | C | C | C | * | - |
() | C | C | C | * | - |
Without Memory Methods | CPU Time | ||||
---|---|---|---|---|---|
() | 3.0000 | 0.392 | |||
() | 3.0000 | 0.390 | |||
() | 3.0000 | 0.375 | |||
() | 3.0000 | 0.313 | |||
() | 3.0000 | 0.328 | |||
() | 3.0000 | 0.329 | |||
() | 2.9887 | 0.234 | |||
() | 2.9976 | 0.218 | |||
() | 2.9912 | 0.250 | |||
() | 3.0008 | 0.282 | |||
() | 2.9774 | 0.234 | |||
() | 2.9830 | 0.234 | |||
() | 3.0049 | 0.359 | |||
() | 3.0056 | 0.360 | |||
() | 3.0096 | 0.376 | |||
() | 3.0000 | 0.344 | |||
() | 3.0246 | 0.313 | |||
() | 3.0000 | 0.296 | |||
() | 2.9998 | 0.390 | |||
() | 2.9999 | 0.375 | |||
() | 2.9998 | 0.376 | |||
() | 2.9994 | 0.328 | |||
() | 2.9996 | 0.406 | |||
() | 3.0001 | 0.375 | |||
() | 3.0002 | 0.298 | |||
() | 3.0001 | 0.327 | |||
() | 3.0003 | 0.328 | |||
() | 3.0000 | 0.313 | |||
() | 3.0002 | 0.297 | |||
() | 3.0003 | 0.234 |
With Memory Methods | CPU Time | ||||
---|---|---|---|---|---|
() | 3.3297 | 0.359 | |||
() | 3.3318 | 0.344 | |||
() | 3.3293 | 0.297 | |||
() | 2.4006 | 0.282 | |||
() | 2.0001 | 0.297 | |||
() | 3.2847 | 0.125 | |||
() | 3.3337 | 0.187 | |||
() | 3.3027 | 0.171 | |||
() | 2.2611 | 0.157 | |||
() | 1.7706 | 0.203 | |||
() | 3.2477 | 0.390 | |||
() | 3.2580 | 0.374 | |||
() | 3.2322 | 0.297 | |||
() | 2.7340 | 0.296 | |||
() | 2.0345 | 0.344 | |||
() | 3.3204 | 0.390 | |||
() | 3.3363 | 0.391 | |||
() | 3.3231 | 0.359 | |||
() | 2.4205 | 0.328 | |||
() | 1.9767 | 0.312 | |||
() | 3.2964 | 0.218 | |||
() | 3.3102 | 0.187 | |||
() | 3.2930 | 0.234 | |||
() | 2.5636 | 0.235 | |||
() | 2.0023 | 0.220 |
Without Memory Methods | Avg_Iter | CPU Time | |
---|---|---|---|
() | 0 | ||
() | 0 | ||
() | 0 | ||
() | |||
() | |||
() | 0 | ||
() | 0 | ||
() | 0 | ||
() | |||
() | |||
() | |||
() | |||
() | |||
() | |||
() | |||
() | 0 | ||
() | 0 | ||
() | 0 | ||
() | 0 | ||
() |
With Memory Methods | Avg_Iter | CPU Time | |
---|---|---|---|
() | 0 | ||
() | 0 | ||
() | 0 | ||
() | |||
() | |||
() | 0 | ||
() | 0 | ||
() | 0 | ||
() | |||
() | |||
() | |||
() | 0 | ||
() | 0 | ||
() | |||
() | |||
() | 0 | ||
() | 0 | ||
() | 0 | ||
() | |||
() |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, H.; Kansal, M.; Behl, R. An Efficient Two-Step Iterative Family Adaptive with Memory for Solving Nonlinear Equations and Their Applications. Math. Comput. Appl. 2022, 27, 97. https://doi.org/10.3390/mca27060097
Sharma H, Kansal M, Behl R. An Efficient Two-Step Iterative Family Adaptive with Memory for Solving Nonlinear Equations and Their Applications. Mathematical and Computational Applications. 2022; 27(6):97. https://doi.org/10.3390/mca27060097
Chicago/Turabian StyleSharma, Himani, Munish Kansal, and Ramandeep Behl. 2022. "An Efficient Two-Step Iterative Family Adaptive with Memory for Solving Nonlinear Equations and Their Applications" Mathematical and Computational Applications 27, no. 6: 97. https://doi.org/10.3390/mca27060097
APA StyleSharma, H., Kansal, M., & Behl, R. (2022). An Efficient Two-Step Iterative Family Adaptive with Memory for Solving Nonlinear Equations and Their Applications. Mathematical and Computational Applications, 27(6), 97. https://doi.org/10.3390/mca27060097