The Hypervolume Newton Method for Constrained Multi-Objective Optimization Problems
Abstract
:1. Introduction
2. Background and Related Work
2.1. Notations
2.2. Multi-Objective Optimization
2.3. Hypervolume Indicator and Its First-Order Derivatives
2.4. Hypervolume Hessian and Hypervolume Newton Method
3. Hypervolume Newton Method for Constrained MOPs
3.1. Handling Equalities
3.2. Handling Inequalities
3.3. Handling Dominated Points
3.4. The HVN Method for Constrained MOPs
Algorithm 1: Standalone hypervolume Newton algorithm for equality-constrained MOPs |
3.5. Computational Cost
4. Numerical Results
4.1. HVN as Standalone Algorithm
4.2. HVN within NSGA-III
Algorithm 2: Hybridization of HVN and MOEA |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stewart, T.; Bandte, O.; Braun, H.; Chakraborti, N.; Ehrgott, M.; Göbelt, M.; Jin, Y.; Nakayama, H. Real-World Applications of Multiobjective Optimization. In Proceedings of the Multiobjective Optimization, Lecture Notes in Computer Science; Slowinski, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5252, pp. 285–327. [Google Scholar]
- Deb, K. Evolutionary multi-objective optimization: Past, present and future. In Proceedings of the GECCO ’20: Proceedings of the 22th annual Conference on Genetic and Evolutionary Computation, Cancún, Mexico, 8–12 July 2020; pp. 343–372. [Google Scholar]
- Aguilera-Rueda, V.J.; Cruz-Ramírez, N.; Mezura-Montes, E. Data-Driven Bayesian Network Learning: A Bi-Objective Approach to Address the Bias-Variance Decomposition. Math. Comput. Appl. 2020, 25, 37. [Google Scholar] [CrossRef]
- Frausto-Solis, J.; Hernández-Ramírez, L.; Castilla-Valdez, G.; González-Barbosa, J.J.; Sánchez-Hernández, J.P. Chaotic Multi-Objective Simulated Annealing and Threshold Accepting for Job Shop Scheduling Problem. Math. Comput. Appl. 2021, 26, 8. [Google Scholar] [CrossRef]
- Utz, S.; Wimmer, M.; Hirschberger, M.; Steuer, R.E. Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds. Eur. J. Oper. Res. 2014, 234, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Padilla, A.; Lopez-Garcia, D.; Gómez-Santillán, C.; Fraire-Huacuja, H.J.; Cruz-Reyes, L.; Rangel-Valdez, N.; Morales-Rodríguez, M.L. Modeling and Optimizing the Multi-Objective Portfolio Optimization Problem with Trapezoidal Fuzzy Parameters. Math. Comput. Appl. 2021, 26, 36. [Google Scholar] [CrossRef]
- Van Veldhuizen, D.A. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations; Technical report; Air Force Institute of Technology: Kaduna, Nigeria, 1999. [Google Scholar]
- Coello, C.A.C.; Cortés, N.C. Solving Multiobjective Optimization Problems Using an Artificial Immune System. Genet. Program. Evolvable Mach. 2005, 6, 163–190. [Google Scholar] [CrossRef]
- Schütze, O.; Esquivel, X.; Lara, A.; Coello, C.A.C. Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 2012, 16, 504–522. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; da Fonseca, V.G. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Auger, A.; Bader, J.; Brockhoff, D.; Zitzler, E. Theory of the hypervolume indicator: Optimal μ-distributions and the choice of the reference point. In Proceedings of the Foundations of Genetic Algorithms, 10th ACM SIGEVO International Workshop, FOGA 2009, Orlando, FL, USA, 9–11 January 2009; Garibay, I.I., Jansen, T., Wiegand, R.P., Wu, A.S., Eds.; ACM: New York, NY, USA, 2009; pp. 87–102. [Google Scholar] [CrossRef] [Green Version]
- Beume, N.; Naujoks, B.; Emmerich, M.T.M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 2007, 181, 1653–1669. [Google Scholar] [CrossRef]
- Bader, J.; Zitzler, E. HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. Evol. Comput. 2011, 19, 45–76. [Google Scholar] [CrossRef]
- Schütze, O.; Domínguez-Medina, C.; Cruz-Cortés, N.; de la Fraga, L.G.; Sun, J.Q.; Toscano, G.; Landa, R. A scalar optimization approach for averaged Hausdorff approximations of the Pareto front. Eng. Optim. 2016, 48, 1593–1617. [Google Scholar] [CrossRef]
- Emmerich, M.; Deutz, A.; Beume, N. Gradient-Based/Evolutionary Relay Hybrid for Computing Pareto Front Approximations Maximizing the S-Metric. In Proceedings of the Hybrid Metaheuristics; Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 140–156. [Google Scholar]
- Emmerich, M.; Deutz, A.H. Time Complexity and Zeros of the Hypervolume Indicator Gradient Field. In Proceedings of the EVOLVE—A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III EVOLVE 2012, Mexico City, Mexico, 7–9 August 2012; Studies in Computational Intelligence. Schuetze, O., Coello, C.A.C., Tantar, A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 500, pp. 169–193. [Google Scholar] [CrossRef]
- Wang, H.; Ren, Y.; Deutz, A.; Emmerich, M. On steering dominated points in hypervolume indicator gradient ascent for bi-objective optimization. In NEO 2015; Springer: Berlin/Heidelberg, Germany, 2017; pp. 175–203. [Google Scholar]
- Deist, T.M.; Maree, S.C.; Alderliesten, T.; Bosman, P.A. Multi-objective optimization by uncrowded hypervolume gradient ascent. In Proceedings of the International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 2020; pp. 186–200. [Google Scholar]
- Wang, H.; Deutz, A.H.; Bäck, T.; Emmerich, M. Hypervolume Indicator Gradient Ascent Multi-objective Optimization. In Proceedings of the Evolutionary Multi-Criterion Optimization—9th International Conference, EMO 2017, Münster, Germany, 19–22 March 2017; Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M.M., Jin, Y., Grimme, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10173, pp. 654–669. [Google Scholar] [CrossRef]
- Sosa Hernández, V.A.; Schütze, O.; Emmerich, M. Hypervolume maximization via set based Newton’s method. In EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V; Springer: Berlin/Heidelberg, Germany, 2014; pp. 15–28. [Google Scholar]
- Sosa-Hernández, V.A.; Schütze, O.; Wang, H.; Deutz, A.H.; Emmerich, M. The Set-Based Hypervolume Newton Method for Bi-Objective Optimization. IEEE Trans. Cybern. 2020, 50, 2186–2196. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.B.; Pedersen, M.S. The matrix cookbook. Tech. Univ. Den. 2008, 7, 510. [Google Scholar]
- Hillermeier, C. Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 135. [Google Scholar]
- Miettinen, K. Nonlinear Multiobjective Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 12. [Google Scholar]
- Klamroth, K.; Tind, J.; Wiecek, M. Unbiased Approximation in Multicriteria Optimization. Math. Methods Oper. Res. 2002, 56, 413–437. [Google Scholar] [CrossRef]
- Fliege, J. Gap-free computation of Pareto-points by quadratic scalarizations. Math. Methods Oper. Res. 2004, 59, 69–89. [Google Scholar] [CrossRef]
- Eichfelder, G. Adaptive Scalarization Methods in Multiobjective Optimization; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Das, I.; Dennis, J.E. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems. SIAM J. Optim. 1998, 8, 631–657. [Google Scholar] [CrossRef] [Green Version]
- Fliege, J.; Drummond, L.G.; Svaiter, B.F. Newton’s method for multiobjective optimization. SIAM J. Optim. 2009, 20, 602–626. [Google Scholar] [CrossRef] [Green Version]
- Dellnitz, M.; Schütze, O.; Hestermeyer, T. Covering Pareto Sets by Multilevel Subdivision Techniques. J. Optim. Theory Appl. 2005, 124, 113–155. [Google Scholar] [CrossRef]
- Hernández, C.; Naranjani, Y.; Sardahi, Y.; Liang, W.; Schütze, O.; Sun, J.Q. Simple Cell Mapping Method for Multi-objective Optimal Feedback Control Design. Int. J. Dyn. Control. 2013, 1, 231–238. [Google Scholar] [CrossRef]
- Sun, J.Q.; Xiong, F.R.; Schütze, O.; Hernández, C. Cell Mapping Methods—Algorithmic Approaches and Applications; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Zhang, Q.; Li, H. MOEA/D: A Multi-objective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Ishibuchi, H.; Masuda, H.; Nojima, Y. A Study on Performance Evaluation Ability of a Modified Inverted Generational Distance Indicator; Association for Computing Machinery: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Dilettoso, E.; Rizzo, S.A.; Salerno, N. A Weakly Pareto Compliant Quality Indicator. Math. Comput. Appl. 2017, 22, 25. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, G.; Schütze, O.; Grimme, C.; Domínguez-Medina, C.; Trautmann, H. Optimal averaged Hausdorff archives for bi-objective problems: Theoretical and numerical results. Comput. Optim. Appl. 2016, 64, 589–618. [Google Scholar] [CrossRef]
- Bogoya, J.M.; Vargas, A.; Schütze, O. The Averaged Hausdorff Distances in Multi-Objective Optimization: A Review. Mathematics 2019, 7, 894. [Google Scholar] [CrossRef] [Green Version]
- Schütze, O.; Dell’Aere, A.; Dellnitz, M. On Continuation Methods for the Numerical Treatment of Multi-Objective Optimization Problems. In Proceedings of the Practical Approaches to Multi-Objective Optimization; Number 04461 in Dagstuhl Seminar Proceedings; Branke, J., Deb, K., Miettinen, K., Steuer, R.E., Eds.; Internationales Begegnungs- und Forschungszentrum (IBFI): Schloss Dagstuhl, Germany, 2005; Available online: http://drops.dagstuhl.de/opus/volltexte/2005/349 (accessed on 1 November 2022).
- Martin, B.; Goldsztejn, A.; Granvilliers, L.; Jermann, C. On continuation methods for non-linear bi-objective optimization: Towards a certified interval-based approach. J. Glob. Optim. 2014, 64, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Martín, A.; Schütze, O. Pareto Tracer: A predictor-corrector method for multi-objective optimization problems. Eng. Optim. 2018, 50, 516–536. [Google Scholar] [CrossRef]
- Schütze, O.; Cuate, O.; Martín, A.; Peitz, S.; Dellnitz, M. Pareto Explorer: A global/local exploration tool for many-objective optimization problems. Eng. Optim. 2020, 52, 832–855. [Google Scholar] [CrossRef]
- Beltrán, F.; Cuate, O.; Schütze, O. The Pareto Tracer for General Inequality Constrained Multi-Objective Optimization Problems. Math. Comput. Appl. 2020, 25, 80. [Google Scholar] [CrossRef]
- Bolten, M.; Doganay, O.T.; Gottschalk, H.; Klamroth, K. Tracing Locally Pareto-Optimal Points by Numerical Integration. SIAM J. Control. Optim. 2021, 59, 3302–3328. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L. Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study. In Proceedings of the Parallel Problem Solving from Nature—PPSN V, 5th International Conference, Amsterdam, The Netherlands, 27–30 September 1998; Lecture Notes in Computer Science. Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1498, pp. 292–304. [Google Scholar] [CrossRef]
- Emmerich, M.; Yang, K.; Deutz, A.H.; Wang, H.; Fonseca, C.M. A Multicriteria Generalization of Bayesian Global Optimization. In Advances in Stochastic and Deterministic Global Optimization; Pardalos, P.M., Zhigljavsky, A., Zilinskas, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 107, pp. 229–242. [Google Scholar] [CrossRef]
- DiBenedetto, E.; Debenedetto, E. Real Analysis; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Paquete, L.; Schulze, B.; Stiglmayr, M.; Lourenço, A.C. Computing representations using hypervolume scalarizations. Comput. Oper. Res. 2022, 137, 105349. [Google Scholar] [CrossRef]
- Margossian, C.C. A Review of Automatic Differentiation and its Efficient Implementation. WIREs Data Mining Knowl. Discov. 2019, 9, e1305. [Google Scholar] [CrossRef] [Green Version]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef] [Green Version]
- Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic Differentiation in Machine Learning: A Survey. J. Mach. Learn. Res. 2017, 18, 153:1–153:43. [Google Scholar]
- Griewank, A.; Walther, A. Evaluating Derivatives—Principles and Techniques of Algorithmic Differentiation, 2nd ed.; SIAM: Philadelphia, PA, USA, 2008. [Google Scholar] [CrossRef]
- Cuate, O.; Uribe, L.; Lara, A.; Schütze, O. A benchmark for equality constrained multi-objective optimization. Swarm Evol. Comput. 2020, 52, 100619. [Google Scholar] [CrossRef]
- Cuate, O.; Uribe, L.; Lara, A.; Schütze, O. Dataset on a Benchmark for Equality Constrained Multi-objective Optimization. Data Brief 2020, 29, 105130. [Google Scholar] [CrossRef]
- Fu, C.; Wang, P.; Zhao, L.; Wang, X. A distance correlation-based Kriging modeling method for high-dimensional problems. Knowl. Based Syst. 2020, 206, 106356. [Google Scholar] [CrossRef]
Linear | Logistic | Logit | |
---|---|---|---|
1 | 4.23 | 4.55 | 4.20 |
2 | 2.33 | 2.54 | 2.27 |
3 | 8.81 | 1.01 | 8.52 |
4 | 8.19 | 7.82 | 8.30 |
5 | 2.29 | 2.17 | 2.29 |
6 | 1.06 | 8.77 | 1.11 |
7 | 1.91 | 3.48 | 1.93 |
8 | 7.38 | 7.05 | 1.03 |
9 | 1.76 | 1.06 | 1.55 |
10 | 1.62 | 1.79 | 2.33 |
Problem P2 | Problem P3 | |||||
---|---|---|---|---|---|---|
1 | 1.365 | 1.055 | 18.036836 | 1.433 | 569.121097 | 438.983791 |
2 | 9.454 | 9.259 | 16.083916 | 9.368 | 541.523806 | 434.703270 |
3 | 1.247 | 8.977 | 16.403643 | 1.197 | 444.774066 | 365.952443 |
4 | 1.589 | 8.628 | 18.052126 | 9.522 | 261.636562 | 362.014326 |
5 | 9.791 | 6.888 | 12.364802 | 6.194 | 212.841570 | 341.897644 |
6 | 8.618 | 1.123 | 3.899254 | 5.232 | 145.076665 | 254.253017 |
7 | 8.024 | 8.779 | 11.323440 | 3.557 | 103.986300 | 240.719767 |
8 | 4.737 | 7.632 | 13.320606 | 2.419 | 57.592159 | 165.603954 |
9 | 9.037 | 7.090 | 2.543622 | 1.511 | 12.628821 | 109.411195 |
10 | 7.393 | 1.816 | 5.984437 | 8.527 | 0.104307 | 70.516402 |
11 | 1.182 | 2.660 | 5.749496 | 3.732 | 0.097777 | 41.699152 |
12 | 4.399 | 2.877 | 0.702964 | 3.248 | 0.097013 | 19.525977 |
13 | 1.535 | 3.232 | 2.240449 | 2.008 | 0.096634 | 0.447690 |
14 | 2.299 | 3.694 | 13.274468 | 1.829 | 0.096256 | 0.257345 |
15 | 7.425 | 7.159 | 15.201915 | 5.425 | 0.005277 | 2.066379 |
16 | 1.572 | 1.378 | 11.273571 | 1.735 | 0.002934 | 2.016149 |
17 | 4.216 | 1.231 | 3.318978 | 6.372 | 0.001602 | 1.019636 |
18 | 1.630 | 5.630 | 2.818340 | 9.702 | 0.001552 | 0.944297 |
19 | 1.674 | 5.454 | 0.400360 | 9.373 | 0.001528 | 4.904926 |
20 | 1.733 | 5.411 | 0.335107 | 2.546 | 0.001522 | 2.937413 |
21 | 1.803 | 4.697 | 0.074058 | 7.243 | 0.001516 | 3.118031 |
22 | 1.761 | 5.901 | 0.081798 | 8.897 | 0.001139 | 0.336917 |
23 | 1.384 | 6.140 | 0.057776 | 6.654 | 0.001072 | 0.004270 |
24 | 1.020 | 4.508 | 0.029809 | 7.210 | 0.001010 | 0.000866 |
25 | 9.765 | 2.759 | 0.001956 | 5.851 | 0.000994 | 0.000489 |
26 | 9.788 | 7.794 | 0.081949 | 5.851 | 0.000990 | 0.000477 |
27 | 1.177 | 7.767 | 0.031275 | 5.851 | 0.000954 | 0.000459 |
28 | 1.176 | 7.688 | 0.000492 | 5.851 | 0.128140 | 0.000460 |
29 | 1.052 | 5.918 | 0.000053 | 5.851 | 0.252721 | 0.000460 |
30 | 1.314 | 6.821 | 0.000002 | 5.851 | 0.022233 | 0.000460 |
Eq-DTLZ1 | Eq-DTLZ2 | Eq-DTLZ3 | Eq-DTLZ4 | |||||
---|---|---|---|---|---|---|---|---|
Algorithm | HV | #ND | HV | #ND | HV | #ND | HV | #ND |
NSGA-III (1000) | 0.867 ± 1.4 | 28.4 ± 0.7 | 0.297 ± 1.9 | 32.7 ± 0.9 | 0.292 ± 1.9 | 26.0 ± 1.0 | 8.4 ± 7.0 | 12.3 ± 0.8 |
Hybridization | 0.876 ± 2.4 | 80.9 ± 2.0 | 0.324 ± 3.6 | 95.3 ± 1.9 | 0.321 ± 6.6 | 75.2 ± 2.4 | 1.1 ± 5.1 | 200.0 ± 0.0 |
NSGA-III (3400) | 0.873 ± 4.5 | 38.5 ± 1.3 | 0.304 ± 9.2 | 32.6 ± 0.9 | 0.301 ± 1.1 | 30.1 ± 0.7 | 9.2 ± 5.2 | 14.5 ± 0.6 |
Eq-IDTLZ1 | Eq-IDTLZ2 | Eq-IDTLZ3 | Eq-IDTLZ4 | |||||
Algorithm | HV | #ND | HV | #ND | HV | #ND | HV | #ND |
NSGA-III (1000) | 0.517 ± 1.8 | 23.2 ± 0.5 | 3.224 ± 2.0 | 74.1 ± 1.2 | 1.5 ± 8.0 | 81.7 ± 1.6 | 8.4 ± 7.0 | 12.3 ± 0.8 |
Hybridization | 0.534 ± 1.5 | 112.1 ± 2.1 | 3.388 ± 1.7 | 198.2 ± 0.4 | 1.6 ± 5.4 | 197.1 ± 0.4 | 1.1 ± 5.1 | 200.0 ± 0.0 |
NSGA-III (3400) | 0.529 ± 2.9 | 33.4 ± 0.4 | 3.359 ± 4.7 | 88.3 ± 0.4 | 1.5 ± 2.5 | 92.1 ± 0.8 | 9.2 ± 5.2 | 14.5 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Emmerich, M.; Deutz, A.; Hernández, V.A.S.; Schütze, O. The Hypervolume Newton Method for Constrained Multi-Objective Optimization Problems. Math. Comput. Appl. 2023, 28, 10. https://doi.org/10.3390/mca28010010
Wang H, Emmerich M, Deutz A, Hernández VAS, Schütze O. The Hypervolume Newton Method for Constrained Multi-Objective Optimization Problems. Mathematical and Computational Applications. 2023; 28(1):10. https://doi.org/10.3390/mca28010010
Chicago/Turabian StyleWang, Hao, Michael Emmerich, André Deutz, Víctor Adrián Sosa Hernández, and Oliver Schütze. 2023. "The Hypervolume Newton Method for Constrained Multi-Objective Optimization Problems" Mathematical and Computational Applications 28, no. 1: 10. https://doi.org/10.3390/mca28010010