Solve High-Dimensional Reflected Partial Differential Equations by Neural Network Method
Abstract
:1. Introduction
2. Approximating Schemes for Reflected PDEs
2.1. Nonlinear Parabolic Reflected PDEs
2.2. From Reflected PDEs to Related Reflected BSDEs
2.3. Discretizing via Two Approaches
3. Numerical Experiments
3.1. Deep C-N Algorithm for Solving High-Dimensional Nonlinear Reflected PDEs
- ( and the same settings in 2 to 4) is a forward iterative procedure, which is determined by approximating scheme (6); this procedure does not contain any parameters that need to be optimized.
- is a forward iterative procedure too, which is characterized by approximating scheme (7). As in the previous step, no parameters need to be optimized in this operation.
- is the key step in the whole calculating procedure. Our goal in this step is approximating the spatial gradients, and meanwhile, the weights are optimized in the (N − 1) sub-networks.
- is a forward iteration procedure that yields the neural network’s final output as the unique approximation of , totally characterized by approximating scheme (14).
3.2. Allen–Cahn Equation
3.3. American Options
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bensoussan, A.; Lions, J.L. Applications of Variational Inequalities in Stochastic Control; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- El Karoui, N.; Kapoudjian, C.; Pardoux, E.; Peng, S.; Quenez, M.C. Reflected solutions of backward SDE’s, and related obstacle problems for PDE. Ann. Probab. 1997, 25, 702–737. [Google Scholar] [CrossRef]
- Cagnetti, F.; Gomes, D.; Tran, H.V. Adjoint methods for obstacle problems and weakly coupled systems of PDE. ESAIM COCV 2013, 19, 754–779. [Google Scholar] [CrossRef] [Green Version]
- Huré, C.; Huyên, P.; Xavier, W. Deep backward schemes for high-dimensional PDEs. Math. Comput. 2020, 89, 1547–1579. [Google Scholar] [CrossRef] [Green Version]
- Zienkiewicz, O.C.; Taylor, R.L.; Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method; McGraw-Hill: London, UK, 1977; Volume 3. [Google Scholar]
- Brenner, S.; Scott, R. The Mathematical Theory of Finite Element Methods; Springer Science & Business Media: Heidelberg, Germany, 2007; Volume 15. [Google Scholar]
- Brennan, M.J.; Schwartz, E.S. The valuation of American put options. J. Financ. 1977, 32, 449–462. [Google Scholar] [CrossRef]
- Brennan, M.J.; Schwartz, E.S. Finite difference methods and jump processes arising in the pricing of contingent claims: A synthesis. J. Financ. Quant. Anal. 1978, 13, 461–474. [Google Scholar] [CrossRef]
- Zhao, J.; Davison, M.; Corless, R.M. Compact finite difference method for American option pricing. J. Comput. Appl. Math. 2007, 206, 306–321. [Google Scholar] [CrossRef] [Green Version]
- Giles, M.B. Multilevel Monte Carlo path simulation. Oper. Res. 2008, 56, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Graham, C.; Talay, D. Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation; Springer Science & Business Media: Heidelberg, Germany, 2013. [Google Scholar]
- Chrysafinos, K.; Karatzas, E.N. Symmetric errors estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE. Discret. Contin. Dyn. Syst. Ser. B 2012, 17, 1473–1506. [Google Scholar]
- Duan, Y.; Tan, Y.J. Meshless Galerkin method based on regions partitioned into subdomains. Appl. Math. Comput. 2005, 162, 317–327. [Google Scholar] [CrossRef]
- Zumbusch, G.W. A sparse grid PDE solver; discretization, adaptivity, software design and parallelization. In Advances in Software Tools for Scientific Computing; Springer: Berlin/Heidelberg, Germany, 2000; pp. 133–177. [Google Scholar]
- Griebel, M.; Oeltz, D. A sparse grid space-time discretization scheme for parabolic problems. Computing 2007, 81, 1–34. [Google Scholar] [CrossRef]
- Bellman, R.E. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957. [Google Scholar]
- Beck, C.; Becker, S.; Grohs, P.; Jaafari, N.; Jentzen, A. Solving the Kolmogorov PDE by means of deep learning. J. Sci. Comput. 2021, 88, 73–101. [Google Scholar] [CrossRef]
- Becker, S.; Braunwarth, R.; Hutzenthaler, M.; Jentzen, A.; Wurstemberger, P. Numerical simulations for full history recursive multilevel Picard approximations for systems of high-dimensional partial differential equations. Commun. Comput. Phys. 2020, 28, 2109–2138. [Google Scholar] [CrossRef]
- Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018, 375, 1339–1364. [Google Scholar] [CrossRef] [Green Version]
- Beck, C.; Becker, S.; Cheridito, P.; Jentzen, A.; Neufeld, A. Deep splitting method for parabolic PDEs. SIAM J. Sci. Comput. 2021, 43, 3135–3154. [Google Scholar] [CrossRef]
- Hutzenthaler, M.; Jentzen, A.; Kruse, T. On multilevel Picard numerical approximations for High-dimensional parabolic partial differential equations and High-dimensional backward stochastic differential equations. J. Sci. Comput. 2019, 79, 1534–1571. [Google Scholar]
- Han, J.; Jentzen, A. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Community Math. Stat. 2017, 5, 349–380. [Google Scholar]
- Beck, C.; Becker, S.; Grohs, P.; Jaafari, N.; Jentzen, A. Solving stochastic differential equations and Kolmogorov equations by means of deep learning. arXiv 2018, arXiv:1806.00421. [Google Scholar]
- Han, J.; Jentzen, A.; Weinan, E. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. USA 2018, 115, 8505–8510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoo, Y.; Lu, J.; Ying, L. Solving parametric PDE problems with artificial neural networks. Eur. J. Appl. Math. 2021, 32, 421–435. [Google Scholar] [CrossRef]
- Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier neural operator for parametric partial differential equations. arXiv 2020, arXiv:2010.08895, 2020. [Google Scholar]
Number of Iteration Step | Standard | Relative -Approximate Error | Relative -Approximate Error | Mean Value of Loss Function | Standard Deviation of Loss Function | |
---|---|---|---|---|---|---|
0 | 0.4740 | 0.0514 | 7.9775 | 0.9734 | 0.11630 | 0.02953 |
1000 | 0.1446 | 0.0340 | 1.7384 | 0.6436 | 0.00550 | 0.00344 |
2000 | 0.0598 | 0.0058 | 0.1318 | 0.1103 | 0.00029 | 0.00006 |
3000 | 0.0530 | 0.0002 | 0.0050 | 0.0041 | 0.00023 | 0.00001 |
4000 | 0.0528 | 0.0002 | 0.0030 | 0.0022 | 0.00020 | 0.00001 |
Number of Iteration Step | Standard | Relative -Approximate Error | Relative -Approximate Error | Mean Value of Loss Function | Standard Deviation of Loss Function | |
---|---|---|---|---|---|---|
0 | 0.5021 | 0.0791 | 0.2979 | 0.449313 | 0.137191 | 0.043493 |
2000 | 0.0659 | 0.0083 | 0.0131 | 0.011521 | 0.000407 | 0.000142 |
4000 | 0.0569 | 0.0021 | 0.0002 | 0.000040 | 0.000201 | 0.000027 |
6000 | 0.0531 | 0.0002 | 0.0002 | 0.000013 | 0.000118 | 0.000240 |
8000 | 0.0529 | 0.0002 | 0.0002 | 0.000156 | 0.000055 | 0.000012 |
10,000 | 0.0528 | 0.0001 | 0.0001 | 0.000117 | 0.000030 | 0.000010 |
Dimensions | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 |
---|---|---|---|---|---|---|---|---|
Deep BSDE | 3.415 × 10−4 | 1.886 × 10−4 | 1.44 × 10−4 | 1.029 × 10−4 | 9.973 × 10−5 | 5.330 × 10−5 | 7.789 × 10−5 | 5.774 × 10−5 |
Deep C-N | 1.095 × 10−4 | 3.095 × 10−5 | 1.853 × 10−5 | 1.435 × 10−5 | 1.398 × 10−5 | 1.303 × 10−5 | 1.337 × 10−5 | 1.506 × 10−5 |
Models | Dimensions | Value | Reference | Relative Error |
---|---|---|---|---|
Deep C-N | 5 | 0.10720 | 0.10738 | 0.17% |
RDBDP | 5 | 0.10657 | 0.10738 | 0.75% |
Deep BSDE | 5 | NC | 0.10738 | NC |
Deep C-N | 10 | 0.12687 | 0.12996 | 2.38% |
RDBDP | 10 | 0.12829 | 0.12996 | 1.29% |
Deep BSDE | 10 | NC | 0.12996 | NC |
Deep C-N | 20 | 0.15140 | 0.15100 | 0.27% |
RDBDP | 20 | 0.14430 | 0.15100 | 4.38% |
Deep BSDE | 20 | NC | 0.15100 | NC |
Deep C-N | 40 | 0.16213 | 0.16800 | 3.49% |
RDBDP | 40 | 0.16167 | 0.16800 | 3.77% |
Deep BSDE | 40 | NC | 0.16800 | NC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Zhang, X.; Tang, R.; Yang, J. Solve High-Dimensional Reflected Partial Differential Equations by Neural Network Method. Math. Comput. Appl. 2023, 28, 79. https://doi.org/10.3390/mca28040079
Shi X, Zhang X, Tang R, Yang J. Solve High-Dimensional Reflected Partial Differential Equations by Neural Network Method. Mathematical and Computational Applications. 2023; 28(4):79. https://doi.org/10.3390/mca28040079
Chicago/Turabian StyleShi, Xiaowen, Xiangyu Zhang, Renwu Tang, and Juan Yang. 2023. "Solve High-Dimensional Reflected Partial Differential Equations by Neural Network Method" Mathematical and Computational Applications 28, no. 4: 79. https://doi.org/10.3390/mca28040079
APA StyleShi, X., Zhang, X., Tang, R., & Yang, J. (2023). Solve High-Dimensional Reflected Partial Differential Equations by Neural Network Method. Mathematical and Computational Applications, 28(4), 79. https://doi.org/10.3390/mca28040079