A High-Order Proper Orthogonal Decomposition Dimensionality Reduction Compact Finite-Difference Method for Diffusion Problems
Abstract
1. Introduction
2. Finite-Difference (FD) Scheme
3. Analysis of Uniqueness and Stability of the Solution
3.1. Uniqueness of the Solution
3.2. Stability Analysis
4. Construction of Dimensionality-Reduced FD Schemes for Diffusion Equations
4.1. Construction of POD Base
4.2. Develop a Reduced-Dimension FD Scheme Using POD
4.3. Error Estimate for the Reduced-Dimension FD Scheme
5. Numerical Experiment
- Example 1
- Example 2
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.; Gao, X.; Xiao, M. A high-order finite difference method for 1D nonhomogeneous heat equations. Numer. Methods Partial Differ. Equ. 2009, 25, 327–346. [Google Scholar] [CrossRef]
- Zhao, J.; Dai, W.; Niu, T. Fourth-order compact schemes of a heat conduction problem with Neumann boundary conditions. Numer. Methods Partial Diff. Equ. 2007, 23, 949–959. [Google Scholar] [CrossRef]
- Gao, F.; Chi, C. Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation. Appl. Math. Comput. 2006, 187, 1272–1276. [Google Scholar] [CrossRef]
- Liu, H.; Liu, L.; Chen, Y. A semi-discretization method based on quartic splines for solving one-space-dimensional hyperbolic equations. Appl. Math. Comput. 2009, 210, 508–514. [Google Scholar] [CrossRef]
- Zhang, Y. [3, 3] Padé approximation method for solving space fractional Fokker–Planck equations. Appl. Math. Lett. 2014, 35, 109–114. [Google Scholar] [CrossRef]
- Chen, J.; Ge, Y. High order locally one-dimensional methods for solving two-dimensional parabolic equations. Adv. Differ. Equ. 2018, 2018, 361. [Google Scholar] [CrossRef]
- Holmes, P.; Lumley, J.L.; Berkooz, G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Luo, Z.D.; Chen, G. Proper Orthogonal Decomposition Methods for Partial Differential Equations; Academic Press of Elsevier: San Diego, VA, USA, 2018. [Google Scholar]
- Volkwein, S. Proper Orthogonal Decomposition: Applications in Optimization and Control. 2007. Available online: http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/Lecture-Notes-Volkwein.pdf (accessed on 15 June 2025).
- Sirovich, L. Turbulence and the dynamics of coherent structures. Part I: Coherent structures. Q. Appl. Math. 1987, XLV, 561–571. [Google Scholar] [CrossRef]
- Sirovich, L. Turbulence and the dynamics of coherent structures. Part III: Dynamics and scaling. Q. Appl. Math. 1987, XLV, 583–590. [Google Scholar] [CrossRef]
- Selten, F.M. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model. J. Atmos. Sci. 1997, 54, 2099–2114. [Google Scholar] [CrossRef]
- Crommelin, D.T.; Majda, A.J. Strategies for Model Reduction: Comparing Different Optimal Bases. J. Atmos. Sci. 2004, 61, 2206–2217. [Google Scholar] [CrossRef]
- Sun, P.; Luo, Z.; Zhou, Y. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations. Appl. Numer. Math. 2009, 60, 154–164. [Google Scholar] [CrossRef]
- Di, Z.; Luo, Z.; Xie, Z.; Wang, A.; Navon, I.M. An optimizing implicit difference scheme based on proper orthogonal decomposition for the two-dimensional unsaturated soil water flow equation. Int. J. Numer. Methods Fluids 2012, 68, 1324–1340. [Google Scholar] [CrossRef]
- Luo, Z.; Teng, F.; Di, Z. A POD-based reduced-order finite difference extrapolating model with fully second-order accuracy for non-stationary Stokes equations. Int. J. Comput. Fluid Dyn. 2014, 28, 428–436. [Google Scholar] [CrossRef]
- Xia, H.; Luo, Z. An optimized finite difference Crank–Nicolson iterative scheme for the 2D Sobolev equation. Adv. Differ. Equ. 2017, 2017, 196. [Google Scholar] [CrossRef]
- Deng, Q.; Luo, Z. A reduced-order extrapolated finite difference iterative scheme for uniform transmission line equation. Appl. Numer. Math. 2022, 172, 514–524. [Google Scholar] [CrossRef]
- Ren, X.; Li, H. A Reduced-Dimension Weighted Explicit Finite Difference Method Based on the Proper Orthogonal Decomposition Technique for the Space-Fractional Diffusion Equation. Axioms 2024, 1, 461. [Google Scholar] [CrossRef]
- Li, H.; Luo, Z.; Gao, J. A New Reduced-Order fve Algorithm Based on POD Method for Viscoelastic Equations. Acta Math. Sci. 2013, 33, 1076–1098. [Google Scholar] [CrossRef]
- Luo, Z.; Du, J.; Xie, Z.; Guo, Y. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the non-stationary Navier–Stokes equations. Int. J. Numer. Methods Eng. 2011, 88, 31–46. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Z.; Liu, C. The Mixed Finite Element Reduced-Dimension Technique with Unchanged Basis Functions for Hydrodynamic Equation. Mathematics 2023, 11, 807. [Google Scholar] [CrossRef]
- Luo, Z.; Yang, J. The reduced-order method of continuous space-time finite element scheme for the non-stationary incompressible flows. J. Comput. Physics 2022, 456, 111044. [Google Scholar] [CrossRef]
- Yang, J.; Luo, Z.D. A reduced-order extrapolating space-time continuous finite element method for the 2D Sobolev equation. Numer. Methods Partial Differ. Equ. 2020, 36, 1446–1459. [Google Scholar] [CrossRef]
- Luo, Z.D.; Jin, S.J. A reduced-order extrapolated Crank–Nicolson collocation spectral method based on proper orthogonal decomposition for the two-dimensional viscoelastic wave equations. Numer. Methods Partial Differ. Equ. 2020, 36, 49–65. [Google Scholar] [CrossRef]
- Luo, Z.D.; Jiang, W. A reduced-order extrapolated Crank–Nicolson finite spectral element method for the 2D non-stationary Navier–Stokes equations about vorticity-stream functions. Appl. Numer. Math. 2020, 147, 161–173. [Google Scholar] [CrossRef]
h | Error () | Rate | |
---|---|---|---|
3.9882 | |||
4.0046 | |||
3.9969 |
h | Error () | Rate | |
---|---|---|---|
3.9882 | |||
4.0046 | |||
3.9969 |
h | Error () | Rate | |
---|---|---|---|
4.0066 | |||
4.0009 | |||
3.9886 |
h | FD Scheme(s) | Old POD Scheme(s) | |
---|---|---|---|
0.0091016 | 0.0001361 | ||
0.076313 | 0.014682 | ||
3.6298 | 0.016075 | ||
178.4817 | 0.24814 |
h | FD Scheme(s) | New POD Scheme(s) | |
---|---|---|---|
0.0091016 | 0.0000023 | ||
0.076313 | 0.000053 | ||
3.6298 | 0.0007223 | ||
178.4817 | 0.0021736 |
h | Old POD Scheme | New POD Scheme | |
---|---|---|---|
h | Error () | Rate | |
---|---|---|---|
4.0922 | |||
4.0257 | |||
4.0066 |
h | Error () | Rate | |
---|---|---|---|
4.0922 | |||
4.0257 | |||
4.0066 |
h | FD Scheme(s) | New POD Scheme(s) | |
---|---|---|---|
0.010216 | 0.0000535 | ||
0.06125 | 0.0007933 | ||
2.9724 | 0.0007105 | ||
194.2064 | 0.001047 |
h | FD Scheme(s) | New POD Scheme(s) | |
---|---|---|---|
0.026935 | 0.060599 | ||
0.25121 | 0.0007229 | ||
25.4047 | 0.0009537 | ||
2638.6785 | 0.0014795 |
h | Old POD Scheme | New POD Scheme | |
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Li, H. A High-Order Proper Orthogonal Decomposition Dimensionality Reduction Compact Finite-Difference Method for Diffusion Problems. Math. Comput. Appl. 2025, 30, 77. https://doi.org/10.3390/mca30040077
Zhang W, Li H. A High-Order Proper Orthogonal Decomposition Dimensionality Reduction Compact Finite-Difference Method for Diffusion Problems. Mathematical and Computational Applications. 2025; 30(4):77. https://doi.org/10.3390/mca30040077
Chicago/Turabian StyleZhang, Wenqian, and Hong Li. 2025. "A High-Order Proper Orthogonal Decomposition Dimensionality Reduction Compact Finite-Difference Method for Diffusion Problems" Mathematical and Computational Applications 30, no. 4: 77. https://doi.org/10.3390/mca30040077
APA StyleZhang, W., & Li, H. (2025). A High-Order Proper Orthogonal Decomposition Dimensionality Reduction Compact Finite-Difference Method for Diffusion Problems. Mathematical and Computational Applications, 30(4), 77. https://doi.org/10.3390/mca30040077