Measurement of Submicron Particle Size Using Scattering Angle-Corrected Polarization Difference with High Angular Resolution
Abstract
:1. Introduction
2. Methods
2.1. Principle of Polarization Difference Method
2.2. Scattering Angle Correction Method
3. Experiments
3.1. Experimental System
3.2. Materials
4. Results and Discussion
4.1. Scattering Angle Correction
4.2. Comparison of the Results Inverted from Polarization Difference with High and Low Angular Resolution
4.3. Repeatability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karpov, M.; Kudryavtseva, A.; Shevchenko, M.; Tcherniega, N.; Umanskaya, S. Stimulated low-frequency Raman light scattering in systems of nano- and submicron-sized particles. Quantum Electron. 2022, 52, 580–586. [Google Scholar] [CrossRef]
- Gadow, R.; Antipov, V.I.; Kolmakov, A.G.; Vinogradov, L.V.; Larionov, M.D.; Mukhina, Y.E. Synthesis of Submicron, Nanostructured Spherical Powders of Y3Al5O12-Phases by the Method by Ultrasonic Spray Pyrolysis and Investigation of Their Structure and Properties. Ceramics 2022, 5, 201–209. [Google Scholar] [CrossRef]
- Kim, J.; Choi, H.; Park, J.; Lee, C. Effects of submicron magnetite particles on granulation of flocculent sludge and process stability in upflow anaerobic sludge blanket reactor. Bioresour. Technol. 2022, 366, 128205. [Google Scholar] [CrossRef] [PubMed]
- Ti, C.; Shen, Y.; Lei, Y.; Liu, Y. Optical Trapping of Sub−Micrometer Particles with Fiber Tapers Fabricated by Fiber Pulling Assisted Chemical Etching. Photonics 2021, 8, 367. [Google Scholar] [CrossRef]
- Akther, A.; Marqus, S.; Rezk, A.R.; Yeo, L.Y. Submicron particle and cell concentration in a closed chamber surface acoustic wave microcentrifuge. Anal. Chem. 2020, 92, 10024–10032. [Google Scholar] [CrossRef] [PubMed]
- Czarnecki, R.; Bicker, K.L.; Green, R.M. Soluble Powder, Such as Composite Powder Used as Coating Additive and Additive in Personal Care Products, Comprises Homogenous Composite Particles Comprising Soluble Thermoplastic Material and Submicron Nanoparticle Material. U.S. Patent US 2023/0050330 A1, 10 August 2023. [Google Scholar]
- Cravotto, G.; Laszlo, J.; Foglia, E.; Crabotto, J.C.; Rathrow, I.; Elena, F.A. Preparation of Composite Containing Submicron Sized Particles of Metal Oxide-Pigment Used in Cosmetics, Involves Providing Metal Oxide Pigment and Oligomeric and/or Polymeric Carbohydrate Present in Preset Mass Ratio. International Patent WO 2021/058591 A1, 26 April 2021. [Google Scholar]
- Septiani, E.L.; Yamashita, S.; Cao, K.L.A. One-Step Aerosol Synthesis of SiO2-Coated FeNi Particles by Using Swirler Connector-Assisted Spray Pyrolysis. Ind. Eng. Chem. Res. 2022, 61, 17885–17893. [Google Scholar] [CrossRef]
- Septiani, E.L.; Kikkawa, J.; Cao, K.L.A.; Hirano, T.; Okuda, N.; Matsumoto, H.; Enokido, Y.; Ogi, T. DC bias characteristic enhancement of the powder core by using densified submicron sized FeNi particles through spray pyrolysis. J. Mater. Chem. C 2022, 10, 8288–8295. [Google Scholar] [CrossRef]
- Quynh, L.M.; Van Huy, H.; Thien, N.D. Synthesis of Si/SiO2 core/shell fluorescent submicron-spheres for monitoring the accumulation of colloidal silica during the growth of diatom Chaetoceros sp. Commun. Sci. Technol. 2022, 7, 1–7. [Google Scholar] [CrossRef]
- Morimoto, R.; Suzuki, T.; Minami, H. Preparation of Polypropylene/Polystyrene Composite Particles with Multilayered Inner Morphology by Seeded Emulsion Polymerization. ACS Appl. Polym. Mater. 2022, 4, 5619–5625. [Google Scholar] [CrossRef]
- Boldin, M.; Popov, A.; Nokhrin, A.; Murashov, A.; Shotin, S.; Chuvil’Deev, V.; Tabachkova, N.Y.; Smetanina, K. Effect of grain boundary state and grain size on the microstructure and mechanical properties of alumina obtained by SPS: A case of the amorphous layer on particle surface. Ceram. Int. 2022, 48, 25723–25740. [Google Scholar] [CrossRef]
- Lemishko, S.V.; Andriiko, A.; Golovina, I. Dielectric and magnetic properties of KTaO3 co-doped with Li and Co: Size effects. Funct. Mater. 2021, 28, 427–436. [Google Scholar]
- Aliotta, L.; Cinelli, P.; Coltelli, M.B.; Lazzeri, A. Rigid filler toughening in PLA-Calcium Carbonate composites: Effect of particle surface treatment and matrix plasticization. Eur. Polym. J. 2019, 113, 78–88. [Google Scholar] [CrossRef]
- De Oliveira, A.E.; Guerra, V.G. Electrostatic precipitation of nanoparticles and submicron particles: Review of technological strategies. Process Saf. Environ. Prot. 2021, 153, 422–438. [Google Scholar] [CrossRef]
- Bläubaum, L.; Röder, F.; Nowak, C.; Chan, H.S.; Kwade, A.; Krewer, U. Impact of particle size distribution on performance of Lithium-Ion batteries. ChemElectroChem 2020, 7, 4755–4766. [Google Scholar] [CrossRef]
- Arifuzzaman, M.; Ranasinghe, M.; Rajamanthrilage, A.C.; Bhattacharya, S.; Anker, J.N. Fast and Inexpensive Separation of Bright Phosphor Particles from Commercial Sources by Gravitational and Centrifugal Sedimentation for Deep Tissue X-ray Luminescence Imaging. Photonics 2022, 9, 347. [Google Scholar] [CrossRef]
- Villegas, A.; Quiroz-Juárez, M.A.; U’ren, A.B.; Torres, J.P.; León-Montiel, R.d.J. Identification of Model Particle Mixtures Using Machine-Learning-Assisted Laser Diffraction. Photonics 2022, 9, 74. [Google Scholar] [CrossRef]
- Chicea, D.; Doroshkevich, A.S.; Lyubchyk, A. On the Possibility of Designing an Advanced Sensor with Particle Sizing Using Dynamic Light Scattering Time Series Spectral Entropy and Artificial Neural Network. Sensors 2022, 22, 3871. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Hou, L.; Zhou, W. A Novel Optical Instrument for Measuring Mass Concentration and Particle Size in Real Time. Sensors 2023, 23, 3616. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, T.; Li, T.; Qiu, H.; Huang, M. Particle size distribution measurement based on the angular scattering efficiency factor spectra inversion–simulation and experiment. Opt. Express 2023, 31, 19867–19885. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Moteki, N.; Adachi, K. Identification and particle sizing of submicron mineral dust by using complex forward-scattering amplitude data. Aerosol Sci. Technol. 2022, 56, 609–622. [Google Scholar] [CrossRef]
- Li, H.; Zhu, J.; Deng, J.; Guo, F.; Sun, J.; Zhang, Y.; Hou, X. Influence mechanism of the particle size on underwater active polarization imaging of reflective targets. Opt. Express 2023, 31, 7212–7225. [Google Scholar] [CrossRef] [PubMed]
- Kobus, J.; Petersen, A.; Greiner, F.; Wolf, S. Radiative transfer simulations for in-situ particle size diagnostic in reactive, particle growing plasmas. J. Phys. D Appl. Phys. 2022, 55, 355202. [Google Scholar] [CrossRef]
- Singh, M.D.; Vitkin, I.A. Spatial helicity response metric to quantify particle size and turbidity of heterogeneous media through circular polarization imaging. Sci. Rep. 2023, 13, 2231. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Q.; Yuan, J.Y.; Hervé, P. Determination of particle size distribution by polarization analysis of the scattered light. Optik 2022, 251, 168454. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, Q.; Zhang, F. Particle size and refractive index measurement based on the polarization distribution difference of scattered light. Acta Opt. Sin. 2021, 41, 247–255. [Google Scholar]
- Bott, S.E.; Howard, H.W. Particle Size Analysis Utilizing Polarization Intensity Differential Scattering. U.S. Patent US5104221, 14 April 1992. [Google Scholar]
- Genc, S.; Icoz, K.; Erdem, T. Numerical analysis and experimental verification of optical scattering from microplastics. R. Soc. Open Sci. 2023, 10, 230586. [Google Scholar] [CrossRef] [PubMed]
- Takamune, M.; Sasaki, S.; Kondo, D.; Naoi, J.; Kumakura, M.; Ashida, M.; Moriwaki, Y. In situ size measurement of a magnetically trapped single superconducting microparticle by Mie scattering. Appl. Phys. Express 2021, 15, 012007. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, Y.M.; Zhang, Y.L. Analysis of the polarization characteristics of scattered light of underwater suspended particles based on Mie theory. Optoelectron. Lett. 2021, 17, 252–256. [Google Scholar] [CrossRef]
- Gomi, H. Multiple scattering correction in the measurement of particle size and number density by the diffraction method. Appl. Opt. 1986, 25, 3552–3558. [Google Scholar] [CrossRef]
- Pan, L. Improvement on Calculation and Detection Method of Particle Scattered Light Distribution. Master’s Thesis, Tianjin University, Tianjin, China, 2013. [Google Scholar]
- ISO13320—2020; Particle Size Analysis-Laser Diffraction Methods. International Organization for Standardization: Geneva, Switzerland, 2020.
- Shi, Y.; Yin, G.; Zhao, N.; Shi, C.; Jia, R.; Ma, M.; Liu, D.; Qi, Y.; Xia, M.; Gan, T.; et al. Static light scattering method for measuring particle sizes of suspended particles in water body to eliminate background interference. Chin. J. Lasers 2022, 49, 0704004. [Google Scholar]
- Kumar, P.S.; Korving, L.; Keesman, K.J.; van Loosdrecht, M.C.; Witkamp, G.-J. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chem. Eng. J. 2019, 358, 160–169. [Google Scholar] [CrossRef]
Sample | Angular Resolution | Peak Particle Size | Volume Fraction of the Peak Particle Size | Width of Particle Size Distribution |
---|---|---|---|---|
350 nm | low | 340 nm | 39.0% | 1.11 |
high | 350 nm | 58.3% | 1.06 | |
200 nm | low | 230 nm | 20.6% | 1.34 |
high | 200 nm | 49.8% | 1.14 | |
100 nm | low | 90 nm | 29.1% | 1.59 |
high | 100 nm | 46.1% | 1.32 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | MRE | CV |
---|---|---|---|---|---|---|---|---|---|---|
D50L/nm | 336.7 | 329.6 | 345.7 | 356.9 | 361.8 | 325.6 | 339.8 | 330.5 | 4.4% | 3.9% |
D50H/nm | 346.5 | 348.3 | 351.7 | 345.0 | 346.9 | 350.2 | 345.3 | 349.7 | 1.5% | 0.7% |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | MRE | CV |
---|---|---|---|---|---|---|---|---|---|---|
D50L/nm | 219.3 | 185.2 | 184.2 | 208.7 | 196.8 | 206.3 | 211.7 | 205.7 | 4.6% | 6.2% |
D50H/nm | 195.9 | 201.0 | 199.7 | 201.0 | 198.3 | 199.5 | 196.7 | 200.6 | 3.0% | 1.0% |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | MRE | CV |
---|---|---|---|---|---|---|---|---|---|---|
D50L/nm | 82.7 | 90.2 | 96.6 | 105.6 | 98.6 | 106.5 | 101.5 | 89.2 | 8.2% | 8.7% |
D50H/nm | 98.0 | 100.6 | 98.9 | 99.7 | 100.0 | 99.0 | 99.9 | 100.3 | 3.9% | 0.9% |
Parameter | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
D10 | measured value/nm | 338.1 | 340.9 | 336.9 | 339.0 | 342.2 | 335.1 | 335.0 | 336.7 |
deviation/% | 0.0% | 0.9% | −0.3% | 0.3% | 1.2% | −0.8% | −0.9% | −0.4% | |
D50 | measured value/nm | 346.5 | 348.3 | 351.7 | 345.0 | 346.9 | 350.2 | 345.3 | 349.7 |
deviation/% | −0.4% | 0.1% | 1.1% | −0.8% | −0.3% | 0.7% | −0.7% | 0.5% | |
D90 | measured value/nm | 356.7 | 357.9 | 354.7 | 358.3 | 357.0 | 355.6 | 359.6 | 360.1 |
deviation/% | −0.2% | 0.1% | −0.8% | 0.2% | −0.1% | −0.5% | 0.6% | 0.7% |
Parameter | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
D10 | measured value/nm | 184.0 | 190.6 | 189.5 | 193.7 | 184.5 | 188.6 | 191.7 | 190.5 |
deviation/% | −2.7% | 0.8% | 0.2% | 2.4% | −2.4% | −0.2% | 1.4% | 0.8% | |
D50 | measured value/nm | 195.9 | 201.0 | 199.7 | 201.0 | 198.3 | 199.5 | 196.7 | 200.6 |
deviation/% | −1.6% | 0.9% | 0.3% | 1.0% | −0.4% | 0.2% | −1.2% | 0.8% | |
D90 | measured value/nm | 209.5 | 210.0 | 208.1 | 212.7 | 215.7 | 209.7 | 205.1 | 213.5 |
deviation/% | −0.5% | −0.2% | −1.1% | 1.0% | 2.5% | −0.4% | −2.6% | 1.4% |
Parameter | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
D10 | measured value/nm | 86.8 | 87.7 | 85.6 | 89.5 | 88.6 | 88.6 | 86.4 | 86.0 |
deviation/% | −0.7% | 0.3% | −2.0% | 2.5% | 1.4% | 1.4% | −1.1% | −1.6% | |
D50 | measured value/nm | 98.0 | 100.6 | 98.9 | 99.7 | 100.0 | 99.0 | 99.9 | 100.3 |
deviation/% | −1.6% | 1.0% | −0.7% | 0.1% | 0.4% | −0.6% | 0.3% | 0.7% | |
D90 | measured value/nm | 114.5 | 110.5 | 115.0 | 111.3 | 110.6 | 115.0 | 112.7 | 114.6 |
deviation/% | 1.3% | −2.2% | 1.8% | −1.5% | −2.1% | 1.8% | −0.3% | 1.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Zhu, Z.; Yin, G.; Gao, X.; Wang, Z.; Zhang, S.; Zhou, Z.; Hu, X. Measurement of Submicron Particle Size Using Scattering Angle-Corrected Polarization Difference with High Angular Resolution. Photonics 2023, 10, 1282. https://doi.org/10.3390/photonics10111282
Shi C, Zhu Z, Yin G, Gao X, Wang Z, Zhang S, Zhou Z, Hu X. Measurement of Submicron Particle Size Using Scattering Angle-Corrected Polarization Difference with High Angular Resolution. Photonics. 2023; 10(11):1282. https://doi.org/10.3390/photonics10111282
Chicago/Turabian StyleShi, Chaoyi, Zuwei Zhu, Gaofang Yin, Xianhe Gao, Zhongma Wang, Sheng Zhang, Zehua Zhou, and Xueyou Hu. 2023. "Measurement of Submicron Particle Size Using Scattering Angle-Corrected Polarization Difference with High Angular Resolution" Photonics 10, no. 11: 1282. https://doi.org/10.3390/photonics10111282
APA StyleShi, C., Zhu, Z., Yin, G., Gao, X., Wang, Z., Zhang, S., Zhou, Z., & Hu, X. (2023). Measurement of Submicron Particle Size Using Scattering Angle-Corrected Polarization Difference with High Angular Resolution. Photonics, 10(11), 1282. https://doi.org/10.3390/photonics10111282