Generation of Orbital Angular Momentum Light by Patterning Azopolymer Thin Films
Abstract
:1. Introduction
Objectives and Structure of the Paper
2. Background, Generation, and Application of OAM Light
3. Azobenzene Materials
Azobenzene Thin Films
4. Azobenzene for OAM Generation and Manipulation
- i.
- The azobenzene-enabled amplitude control plays a pivotal role in encoding information onto light by precisely modulating its intensity or brightness at different spatial points. This can be used to create patterns, enhance contrast, improve resolution and encode information. It is especially useful in microscopy and other optical applications. However, historically, lenses, prisms, apertures, and mirrors were the main static optical devices used in light manipulation, since accurate control over optical fields frequently required more complicated modifications [104]. One may accurately control the amplitude of a light beam as a first step toward better control, an idea that was crucial in the creation of holography. Amplitude masks were used in holography to simulate a “writing” laser beam which carries the information that is being encoded onto a holographic plate. Although clearly beneficial, this method is only able to use specified beam patterns [105].
- ii.
- Azobenzene materials also facilitate phase modulation by altering the timing or phases of different parts of a light wave. This process is integral to enabling beam shaping, producing structured wavefronts, and navigating light in desired directions in applications such as interference patterns, holography [106], and wavefront shaping within optical communication systems [107].
- iii.
- Polarization control alters the orientation of the electric field vector of light. It is used in applications such as LCDs, 3D cinema for 3D effects, and optical communications for transmission of information. Azobenzene plays a valuable role in enabling the manipulation of light’s polarization state for improving data-carrying capacity using polarization-based multiplexing and demultiplexing techniques in optical communication systems.
4.1. Creation of Structured Beams by Spiral Mass Transport
4.2. Azobenzene as an Optical Element for Generation of Structured Light
4.3. Azobenzene as a Template/Mask for Generation of Structured Light
5. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Knight, P. Fundamentals of Photonics. J. Mod. Opt. 1992, 39, 1400. [Google Scholar] [CrossRef]
- Chralyvy, A. Plenary paper: The coming capacity crunch. In Proceedings of the 35th European Conference on Optical Communication, Vienna, Austria, 20–24 September 2009; p. 1. [Google Scholar]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Abramochkin, E.; Volostnikov, V. Beam transformations and nontransformed beams. Opt. Commun. 1991, 83, 123–135. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161. [Google Scholar] [CrossRef]
- Ellis, A.D.; Zhao, J.; Cotter, D. Approaching the Non-Linear Shannon Limit. J. Light. Technol. 2010, 28, 423–433. [Google Scholar] [CrossRef]
- Essiambre, R.-J.; Kramer, G.; Winzer, P.J.; Foschini, G.J.; Goebel, B. Capacity Limits of Optical Fiber Networks. J. Light. Technol. 2010, 28, 662–701. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 2015, 7, 66. [Google Scholar] [CrossRef]
- Zhai, Y.; Cao, L.; Liu, Y.; Tan, X. A Review of Polarization-Sensitive Materials for Polarization Holography. Mater. 2020, 13, 5562. [Google Scholar] [CrossRef]
- Jerca, F.A.; Jerca, V.V.; Hoogenboom, R. Advances and opportunities in the exciting world of azobenzenes. Nat. Rev. Chem. 2021, 6, 51–69. [Google Scholar] [CrossRef]
- Fregoni, J.; Granucci, G.; Coccia, E.; Persico, M.; Corni, S. Manipulating azobenzene photoisomerization through strong light–molecule coupling. Nat. Commun. 2018, 9, 4688. [Google Scholar] [CrossRef] [PubMed]
- El Halabieh, R.H.; Mermut, O.; Barrett, C.J. Using light to control physical properties of polymers and surfaces with azobenzene chromophores. Pure Appl. Chem. 2004, 76, 1445–1465. [Google Scholar] [CrossRef]
- Forbes, A. Structured Light from Lasers. Laser Photonics Rev. 2019, 13, 1900140. [Google Scholar] [CrossRef]
- Nakayama, K.; Jiang, L.; Iyoda, T.; Hashimoto, K.; Fijishima, A. Photo-induced structural transformation on the surface of azobenzene crystals. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 1997, 36, 3898–3902. [Google Scholar] [CrossRef]
- Harada, K.; Itoh, M.; Yatagai, T.; Kamemaru, S.I. Application of surface relief hologram using azobenzene containing polymer film. Opt. Rev. 2005, 12, 130–134. [Google Scholar] [CrossRef]
- De Martino, S.; Mauro, F.; Netti, P.A. Photonic applications of azobenzene molecules embedded in amorphous polymer. Riv. Nuovo Cim. 2020, 43, 599–629. [Google Scholar] [CrossRef]
- Sekkat, Z.; Wood, J.; Aust, E.F.; Knoll, W.; Volksen, W.; Miller, R.D. Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain. J. Opt. Soc. Am. B 1996, 13, 1713–1724. [Google Scholar] [CrossRef]
- Liu, J.; Han, Z.; Wu, P.; Shang, Y.; Chen, J.; Jia, P. Photochromic Azobenzene Inverse Opal Film toward Dynamic Anti-Fake Pattern. Molecules 2023, 28, 5881. [Google Scholar] [CrossRef]
- Yang, X.; Jin, H.; Tao, X.; Yao, Y.; Xie, Y.; Lin, S. Photo-Responsive Azobenzene-Containing Inverse Opal Films for Information Security. Adv. Funct. Mater. 2023, 33, 2304424. [Google Scholar] [CrossRef]
- Curtis, D.G.-P. Review Letters, and Undefined 2003, “Structure of Optical Vortices,” APS. Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.90.133901 (accessed on 31 October 2023).
- Ramachandran, S.; Kristensen, P. Optical vortices in fiber. Nanophotonics 2013, 2, 455–474. [Google Scholar] [CrossRef]
- Berkhout, G.C.; Beijersbergen, M.W. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Phys. Rev. Lett. 2008, 101, 100801. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.; Figueira, G.; André, P. Enabling the study of photons orbital angular momentum for optical communications: Orbital angular momentum carrying beam modulation and demodulation using twsited nematic liquid crystal spatial light modulators. Opt. Quantum Electron. 2016, 48, 425. [Google Scholar] [CrossRef]
- Leach, J.; Padgett, M.J.; Barnett, S.M.; Franke-Arnold, S.; Courtial, J. Measuring the Orbital Angular Momentum of a Single Photon. Phys. Rev. Lett. 2002, 88, 4. [Google Scholar] [CrossRef] [PubMed]
- Willner, A.E.; Song, H.; Zou, K.; Zhou, H.; Su, X. Orbital Angular Momentum Beams for High-Capacity Communications. J. Light. Technol. 2023, 41, 1918–1933. [Google Scholar] [CrossRef]
- Veysi, M.; Guclu, C.; Capolino, F.; Rahmat-Samii, Y. Revisiting orbital angular momentum beams: Fundamentals, reflectarray generation, and novel antenna applications. IEEE Antennas Propag. Mag. 2018, 60, 68–81. [Google Scholar] [CrossRef]
- Gibson, G.; Courtial, J.; Padgett, M.J.; Vasnetsov, M.; Pas’ko, V.; Barnett, S.M.; Franke-Arnold, S. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 2004, 12, 5448. [Google Scholar] [CrossRef]
- Molina-Terriza, G.; Torres, J.P.; Torner, L. Twisted photons. Nat. Phys. 2007, 3, 305–310. [Google Scholar] [CrossRef]
- Erhard, M.; Fickler, R.; Krenn, M.; Zeilinger, A. Twisted photons: New quantum perspectives in high dimensions. Light Sci. Appl. 2018, 7, 17146. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Wang, C. Generation and expansion of Laguerre–Gaussian beams. J. Opt. 2022, 51, 910–926. [Google Scholar] [CrossRef]
- Nicolas, A.; Veissier, L.; Giacobino, E.; Maxein, D.; Laurat, J. Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique. New J. Phys. 2015, 17, 033037. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, C.; Liu, T.; Ren, Y. Generation of spiral optical vortex with varying OAM for micro-manipulation. Opt. Commun. 2022, 524, 128767. [Google Scholar] [CrossRef]
- Cojoc, D.; Garbin, V.; Ferrari, E.; Proietti, R.; Cabrini, S.; Di Fabrizio, E. Laser trapping and micro-manipulation using optical vortices. Dig. Pap. Microprocess. Nanotechnol. 2004, 2004, 260–261. [Google Scholar] [CrossRef]
- Tao, S.H.; Yuan, X.C.; Lin, J.; Sun, Y.Y. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams. J. Appl. Phys. 2006, 100, 043105. [Google Scholar] [CrossRef]
- Kai, C.; Feng, Z.; Dedo, M.I.; Huang, P.; Guo, K.; Shen, F.; Gao, J.; Guo, Z. The Performances of Different OAM Encoding Systems. Opt. Commun. 2019, 430, 151–157. [Google Scholar] [CrossRef]
- Picón, A.; Benseny, A.; Mompart, J.; Vázquez De Aldana, J.R.; Plaja, L.; Calvo, G.F.; Roso, L. Transferring orbital and spin angular momenta of light to atoms. New J. Phys. 2010, 12, 83053. [Google Scholar] [CrossRef]
- Papathanasopoulos, A.; Rahmat-Samii, Y. A Review on Orbital Angular Momentum (OAM) Beams: Fundamental Concepts, Potential Applications, and Perspectives. In Proceedings of the 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Rome, Italy, 28 August–4 September 2021; IEEE: New York, NY, USA, 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Lian, Y.; Qi, X.; Wang, Y.Y.; Bai, Z.; Wang, Y.Y.; Lu, Z. OAM beam generation in space and its applications: A review. Opt. Lasers Eng. 2022, 151, 106923. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Allen, L.; van der Veen, H.E.L.O.; Woerdman, J.P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 1993, 96, 123–132. [Google Scholar] [CrossRef]
- Lu, J.; Cao, C.; Zhu, Z.; Gu, B. Flexible measurement of high-order optical orbital angular momentum with a variable cylindrical lens pair. Appl. Phys. Lett. 2020, 116, 201105. [Google Scholar] [CrossRef]
- Massari, M.; Ruffato, G.; Gintoli, M.; Ricci, F.; Romanato, F. Fabrication and characterization of high-quality spiral phase plates for optical applications. Appl. Opt. 2015, 54, 4077. [Google Scholar] [CrossRef]
- Wang, X.; Nie, Z.; Liang, Y.; Wang, J.; Li, T.; Jia, B. Recent advances on optical vortex generation. Nanophotonics 2018, 7, 1533–1556. [Google Scholar] [CrossRef]
- Meng, X.; Wu, J.; Wu, Z.; Yang, L.; Huang, L.; Li, X.; Qu, T. Design, fabrication, and measurement of an anisotropic holographic metasurface for generating vortex beams carrying orbital angular momentum. Opt. Lett. 2019, 44, 1452. [Google Scholar] [CrossRef] [PubMed]
- Oraizi, H.; Emamian, H. Generation of orbital angular momentum modes via holographic leaky-wave metasurfaces. Sci. Rep. 2020, 10, 7358. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Karpeev, S.V.; Butt, M.A. Spatial-light-modulator-based multichannel data transmission by vortex beams of various orders. Sensors 2021, 21, 2988. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.M.; Minassian, A.; Damzen, M.J.; Rosales-Guzmán, C.; Ndagano, B.; Forbes, A.; Wu, J.; Liu, Y.; Zhang, D.; Pinnell, J.; et al. Probing the limits of orbital angular momentum generation and detection with spatial light modulators. J. Opt. 2021, 23, 15602–15611. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, B.; Han, Y.; Wang, Z.; Yue, Y.; Liu, Y. Generation of Orbital Angular Momentum Modes Using Fiber Systems. Appl. Sci. 2019, 9, 1033. [Google Scholar] [CrossRef]
- Brunet, C.; Rusch, L.A. Optical fibers for the transmission of orbital angular momentum modes. Opt. Fiber Technol. 2017, 35, 2–7. [Google Scholar] [CrossRef]
- Ma, M.; Lian, Y.; Wang, Y.; Lu, Z. Generation, Transmission and Application of Orbital Angular Momentum in Optical Fiber: A Review. Front. Phys. 2021, 9, 773505. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.G.; Wang, Z.; Huang, W.; Chen, L.; Zhang, H.W.; Yang, K. Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings. Nanophotonics 2018, 7, 287–293. [Google Scholar] [CrossRef]
- Pidishety, S.; Pachava, S.; Gregg, P.; Ramachandran, S.; Brambilla, G.; Srinivasan, B. Orbital angular momentum beam excitation using an all-fiber weakly fused mode selective coupler. Opt. Lett. 2017, 42, 4347. [Google Scholar] [CrossRef]
- Fu, C.; Liu, S.; Wang, Y.; Bai, Z.; He, J.; Liao, C.; Zhang, Y.; Zhang, F.; Yu, B.; Gao, S.; et al. High-order orbital angular momentum mode generator based on twisted photonic crystal fiber. Opt. Lett. 2018, 43, 1786. [Google Scholar] [CrossRef]
- Eznaveh, Z.S.; Alvarado Zacarias, J.C.; Antonio Lopez, J.E.; Jung, Y.; Shi, K.; Thomsen, B.C.; Richardson, D.J.; Leon-Saval, S.; Correa, R.A. Annular Core Photonic Lantern OAM Mode Multiplexer. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 19–23 March 2017; OSA: Washington, DC, USA, 2017; p. Tu3J.3. [Google Scholar] [CrossRef]
- Olaleye, T.M.; Ribeiro, P.A.; Raposo, M. Generation of Photon Orbital Angular Momentum and Its Application in Space Division Multiplexing. Photonics 2023, 10, 664. [Google Scholar] [CrossRef]
- Yang, S.; Yang, K.; Niu, L.; Nagarajan, R.; Bian, S.; Jain, A.K.; Kumar, J. Patterning of Substrates Using Surface Relief Structures on an Azobenzene-Functionalized Polymer Film. Adv. Mater. 2004, 16, 693–696. [Google Scholar] [CrossRef]
- Mahimwalla, Z.; Yager, K.G.; Mamiya, J.I.; Shishido, A.; Priimagi, A.; Barrett, C.J. Azobenzene photomechanics: Prospects and potential applications. Polym. Bull. 2012, 69, 967–1006. [Google Scholar] [CrossRef]
- Yamashita, S.; Ono, H.; Toyama, O. The cis-trans Photoisomerization of Azobenzene. Bull. Chem. Soc. Jpn. 1962, 35, 1849–1853. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Z.; Buchholz, M.; Füllgrabe, N.; Grosjean, S.; Bebensee, F.; Bräse, S.; Wöll, C.; Heinke, L. cis-to-trans isomerization of azobenzene investigated by using thin films of metal–organic frameworks. Phys. Chem. Chem. Phys. 2015, 17, 22721–22725. [Google Scholar] [CrossRef] [PubMed]
- Siampiringue, N.; Guyot, G.; Monti, S.; Bortolus, P. The cis → trans photoisomerization of azobenzene: An experimental re-examination. J. Photochem. 1987, 37, 185–188. [Google Scholar] [CrossRef]
- Hartley, G.S. The Cis-Form of Azobenzene. Nature 1937, 140, 281. [Google Scholar] [CrossRef]
- Todorov, T.; Nikolova, L.; Tomova, N. Polarization holography 1: A new high-efficiency organic material with reversible photoinduced birefringence. Appl. Opt. 1984, 23, 4309. [Google Scholar] [CrossRef]
- Yager, K.G.; Barrett, C.J. Novel photo-switching using azobenzene functional materials. J. Photochem. Photobiol. A Chem. 2006, 182, 250–261. [Google Scholar] [CrossRef]
- Natansohn, A.; Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev. 2002, 102, 4139–4175. [Google Scholar] [CrossRef]
- Chyla, A.; Bieńkowski, M.; Sworakowski, J.; Koźlecki, T.; Wilk, K.A. Photochromic properties of anionic azobenzene amphiphiles in solution and Langmuir Blodgett films. Trends Colloid Interface Sci. XI 2007, 105, 153–159. [Google Scholar] [CrossRef]
- Rochon, P.; Batalla, E.; Natansohn, A. Optically induced surface gratings on azoaromatic polymer films. Appl. Phys. Lett. 1995, 66, 136–138. [Google Scholar] [CrossRef]
- Kim, D.; Tripathy, S.; Li, L.; Kumar, J. Laser-Induced Holographic Surface Relief Gratings on Nonlinear Optical Polymer Films. Available online: https://pubs.aip.org/aip/apl/article-abstract/66/10/1166/64201 (accessed on 26 October 2023).
- Oliveira, O.N.; Li, L.; Kumar, J.; Tripathy, S.K. Surface-Relief Gratings on Azobenzene-Containing Films. In Photoreactive Organic Thin Films; Photoreact, Elsevier: Amsterdam, The Netherlands, 2002; pp. 429–486. [Google Scholar] [CrossRef]
- He, J.A.; Bian, S.; Li, L.; Kumar, J.; Tripathy, S.K.; Samuelson, L.A. Surface relief gratings from electrostatically layered azo dye films. Appl. Phys. Lett. 2000, 76, 3233–3235. [Google Scholar] [CrossRef]
- Leibold, J.; Sabat, R.G. Inline holographic inscription of diffractive lenses in azobenzene molecular glass thin films. Appl. Opt. 2021, 60, 2952. [Google Scholar] [CrossRef] [PubMed]
- Decher, G.; Hong, J.D. Buildup of Ultrathin Multilayer Films by a Self-Assembly Process: II. Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles and Polyelectrolytes on Charged Surfaces. Berichte Bunsenges. Phys. Chem. 1991, 95, 1430–1434. [Google Scholar] [CrossRef]
- Decher, G.; Schmitt, J. Fine-Tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes. Trends Colloid Interface Sci. VI 2007, 89, 160–164. [Google Scholar] [CrossRef]
- Oliveira, O.N., Jr.; Raposo, M.; Dhanabalan, A. Langmuir-Blodgett and Self-assembled polymeric films. In Handbook of Surfaces and Interfaces of Materials: Solid Thin Films and Layers; Academic Press: Amsterdam, The Netherlands; Elsevier: Amsterdam, The Netherlands, 2001; Volume 4, pp. 1–63. [Google Scholar] [CrossRef]
- Seki, T.; Sakuragi, M.; Kawanishi, Y.; Suzuki, Y.; Tamaki, T.; Fukuda, R.; Ichimura, K.; Suzuki, Y. “Command Surfaces” of Langmuir-Blodgett Films. Photoregulations of Liquid Crystal Alignment by Molecularly Tailored Surface Azobenzene Layers. Langmuir 1993, 9, 211–218. [Google Scholar] [CrossRef]
- Uznanski, P.; Pecherz, J. Surface plasmon resonance of azobenzene-incorporated polyelectrolyte thin films as an H+ indicator. J. Appl. Polym. Sci. 2002, 86, 1459–1464. [Google Scholar] [CrossRef]
- Han, M.; Ichimura, K. In-plane and tilt reorientation of p-methoxyazobenzene side chains tethered to liquid crystalline polymethacrylates by irradiation with 365 nm light. Macromolecules 2001, 34, 90–98. [Google Scholar] [CrossRef]
- Madruga, C.; Filho, P.A.; Andrade, M.M.; Gonçalves, M.; Raposo, M.; Ribeiro, P.A. Birefringence dynamics of poly{1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt} cast films. Thin Solid Film. 2011, 519, 8191–8196. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Wang, X.; Wang, H.C.; Yang, K.; Kumar, J.; Tripathy, S.K.; Li, L. Azo Chromophore-Functionalized Polyelectrolytes. 2. Acentric Self-Assembly through a Layer-by-Layer Deposition Process. Chem. Mater. 1998, 10, 1554–1560. [Google Scholar] [CrossRef]
- Tripathy, S.; Kumar, J.; Nalwa, H.S. Handbook of Polyelectrolytes and Their Applications. Available online: https://cir.nii.ac.jp/crid/1130282271512206592 (accessed on 27 October 2023).
- Ferreira, Q.; Ribeiro, P.A.; Oliveira, O.N.; Raposo, M. Long-term stability at high temperatures for birefringence in PAZO/PAH layer-by-layer films. ACS Appl. Mater. Interfaces 2012, 4, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Bobrovsky, A.; Shibaev, V.; Cigl, M.; Hamplová, V.; Pociecha, D.; Bubnov, A. Azobenzene-containing LC polymethacrylates highly photosensitive in broad spectral range. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 2962–2970. [Google Scholar] [CrossRef]
- Leibold, J.; Sabat, R.G. Fabrication of micrometer-scale surface relief gratings in azobenzene molecular glass films using a modified Lloyd’s mirror interferometer. Opt. Mater. 2019, 96, 109315. [Google Scholar] [CrossRef]
- Kamenjicki, M.; Lednev, I.K.; Asher, S.A. Photoresponsive azobenzene photonic crystals. J. Phys. Chem. B 2004, 108, 12637–12639. [Google Scholar] [CrossRef]
- Bisoyi, H.; Li, Q. Light-directing chiral liquid crystal nanostructures: From 1D to 3D. Acc. Chem. Res. 2014, 47, 3184–3195. [Google Scholar] [CrossRef]
- Mosquera, J.; Zhao, Y.; Jang, H.J.; Xie, N.; Xu, C.; Kotov, N.A.; Liz-Marzán, L.M. Plasmonic Nanoparticles with Supramolecular Recognition. Adv. Funct. Mater. 2020, 30, 1902082. [Google Scholar] [CrossRef]
- Mahmoud, M.A. Electromagnetic field of plasmonic nanoparticles extends the photoisomerization lifetime of azobenzene. J. Phys. Chem. C 2017, 121, 18144–18152. [Google Scholar] [CrossRef]
- Bruder, F.K.; Hagen, R.; Rölle, T.; Weiser, M.S.; Fäcke, T. From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials. Angew. Chem. Int. Ed. 2011, 50, 4552–4573. [Google Scholar] [CrossRef]
- Hagen, R.; Bieringer, T. Photoaddressable Polymers for Optical Data Storage. Adv. Mater. 2001, 13, 1805–1810. [Google Scholar] [CrossRef]
- Mazloumi, M.; Dawson, E.; Sabat, R.G. Hierarchical concentric surface patterns and metasurfaces on azobenzene molecular glass films using axicon interference lithography. Opt. Mater. 2023, 136, 113428. [Google Scholar] [CrossRef]
- Kang, H.S.; Yang, S. Photopatterning via photofluidization of azobenzene polymers. Light Adv. Manuf. 2022, 3, 3. [Google Scholar] [CrossRef]
- Yager, K.G.; Barrett, C.J. Azobenzene Polymers for Photonic Applications. In Smart Light Responsive Materials: Azobenzene Containing Polymers and Liquid Crystals; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 1–46. [Google Scholar] [CrossRef]
- Yu, H. Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores. J. Mater. Chem. C 2014, 2, 3047–3054. [Google Scholar] [CrossRef]
- Yamamoto, T.; Hasegawa, M.; Kanazawa, A.; Shiono, T.; Ikeda, T. Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals: Enhancement of diffraction efficiency by spatial modulation of molecular alignment. ACS Publ. 1999, 103, 9873–9878. [Google Scholar] [CrossRef]
- Huang, J.; Beckemper, S.; Wu, S.; Shen, J.; Zhang, Q.; Wang, K.; Gillner, A. Light driving force for surface patterning on azobenzene-containing polymers. Phys. Chem. Chem. Phys. 2011, 13, 16150–16158. [Google Scholar] [CrossRef]
- Bégin, J.-L.; Jain, A.; Parks, A.; Hufnagel, F.; Corkum, P.; Karimi, E.; Brabec, T.; Bhardwaj, R. Nonlinear helical dichroism in chiral and achiral molecules. Nat. Photonics 2023, 17, 82–88. [Google Scholar] [CrossRef]
- Sánchez, C.; Alcalá, R.; Hvilsted, S.; Ramanujam, P.S. Biphotonic holographic gratings in azobenzene polyesters: Surface relief phenomena and polarization effects. Appl. Phys. Lett. 2000, 77, 1440–1442. [Google Scholar] [CrossRef]
- Sobolewska, A.; Zawada, J.; Bartkiewicz, S. Biphotonic Photochromic Reaction Results in an Increase in the Efficiency of the Holographic Recording Process in an Azo Polymer. Langmuir 2014, 30, 17–21. [Google Scholar] [CrossRef]
- Wu, P.; Zou, B.; Wu, X.; Xu, J.; Gong, X.; Zhang, G.; Tang, G.; Chen, W. Biphotonic self-diffraction in azo-doped polymer film. Appl. Phys. Lett. 1997, 70, 1224–1226. [Google Scholar] [CrossRef]
- Wu, P.; Wang, L.; Xu, J.; Zou, B.; Gong, X.; Zhang, G.; Tang, G.; Chen, W. Transient biphotonic holographic grating in photoisomerizative azo materials. Phys. Rev. B Condens. Matter Mater. Phys. 1998, 57, 3874–3880. [Google Scholar] [CrossRef]
- Wu, P.; Wu, X.; Wang, L.; Xu, J.; Zou, B.; Gong, X.; Huang, W. Image storage based on biphotonic holography in azo/polymer system. Appl. Phys. Lett. 1998, 72, 418–420. [Google Scholar] [CrossRef]
- Kim, S.; Ishii, S.; Yagi, R.; Kuwahara, Y.; Ogata, T.; Kurihara, S. Photo-induced orientation behaviors of azobenzene liquid crystal copolymers for photonic crystals. RSC Adv. 2017, 7, 51978–51985. [Google Scholar] [CrossRef]
- Pang, X.; Lv, J.; Zhu, C.; Qin, L.; Yu, Y. Photodeformable Azobenzene-Containing Liquid Crystal Polymers and Soft Actuators. Adv. Mater. 2019, 31, 1904224. [Google Scholar] [CrossRef] [PubMed]
- Andrews, D.L. Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces; Elsevier: Amsterdam, The Netherlands, 2008; ISBN 9780123740274. [Google Scholar]
- Angelsky, O.V.; Bekshaev, A.Y.; Dragan, G.S.; Maksimyak, P.P.; Zenkova, C.Y.; Zheng, J. Structured Light Control and Diagnostics Using Optical Crystals. Front. Phys. 2021, 9, 715045. [Google Scholar] [CrossRef]
- Clark, T.W.; Offer, R.F.; Franke-Arnold, S.; Arnold, A.S.; Radwell, N. Comparison of beam generation techniques using a phase only spatial light modulator. Opt. Express 2016, 24, 6249. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Zhao, Z.; Zhang, W. Versatile generation and manipulation of phase-structured light beams using on-chip subwavelength holographic surface gratings. Nanophotonics 2023, 12, 55–70. [Google Scholar] [CrossRef]
- Angelsky, O.V.; Bekshaev, A.Y.; Hanson, S.G.; Zenkova, C.Y.; Mokhun, I.I.; Jun, Z. Structured Light: Ideas and Concepts. Front. Phys. 2020, 8, 114. [Google Scholar] [CrossRef]
- Porfirev, A.; Khonina, S.; Khorin, P.; Ivliev, N. Polarization-Sensitive Direct Laser Patterning of Azopolymer Thin Films with Vortex Beams. Opt. Lett. 2022, 47, 5080–5083. [Google Scholar] [CrossRef]
- Berkowitz, R. Unpolarized Light Could Separate Chiral Molecules. Physics 2022, 15, 66. [Google Scholar] [CrossRef]
- Dumont, M.; El Osman, A. On spontaneous and photoinduced orientational mobility of dye molecules in polymers. Chem. Phys. 1999, 245, 437–462. [Google Scholar] [CrossRef]
- Sekkat, Z.; Yasumatsu, D.; Kawata, S. Pure Photoorientation of Azo Dye in Polyurethanes and Quantification of Orientation of Spectrally Overlapping Isomers. J. Phys. Chem. B 2002, 106, 12407–12417. [Google Scholar] [CrossRef]
- Sekkat, Z.; Kawata, S. Laser nanofabrication in photoresists and azopolymers. Laser Photonics Rev. 2014, 8, 1–26. [Google Scholar] [CrossRef]
- Nakata, Y.; Yoshida, M.; Miyanaga, N. Parallel fabrication of spiral surface structures by interference pattern of circularly polarized beams. Sci. Rep. 2018, 8, 13448. [Google Scholar] [CrossRef] [PubMed]
- Porfirev, A.P.; Khonina, S.N.; Ivliev, N.A.; Fomchenkov, S.A.; Porfirev, D.P.; Karpeev, S.V. Polarization-Sensitive Patterning of Azopolymer Thin Films Using Multiple Structured Laser Beams. Sensors 2022, 23, 112. [Google Scholar] [CrossRef]
- Bhivgade, U.; Maralla, Y.; Bhanvase, B.A.; Sonawane, S. Hydrodynamic, Mass Transfer and RTD Studies of Fluid Flow in a Spiral Microreactor. J. Inst. Eng. Ser. E 2019, 100, 139–146. [Google Scholar] [CrossRef]
- Syubaev, S.; Porfirev, A.; Zhizhchenko, A.; Vitrik, O.; Kudryashov, S.; Fomchenkov, S.; Khonina, S.; Kuchmizhak, A. Zero-orbital-angular-momentum laser printing of chiral nanoneedles. Opt. Lett. 2017, 42, 5022. [Google Scholar] [CrossRef]
- Rekola, H.; Berdin, A.; Fedele, C.; Virkki, M.; Priimagi, A. Digital holographic microscopy for real-time observation of surface-relief grating formation on azobenzene-containing films. Sci. Rep. 2020, 10, 19642. [Google Scholar] [CrossRef] [PubMed]
- Lancia, F.; Yamamoto, T.; Ryabchun, A.; Yamaguchi, T.; Sano, M.; Katsonis, N. Reorientation behavior in the helical motility of light-responsive spiral droplets. Nat. Commun. 2019, 10, 5238. [Google Scholar] [CrossRef]
- Syubaev, S.; Zhizhchenko, A.; Kuchmizhak, A.; Porfirev, A.; Pustovalov, E.; Vitrik, O.; Kulchin, Y.; Khonina, S.; Kudryashov, S. Direct laser printing of chiral plasmonic nanojets by vortex beams. Opt. Express 2017, 25, 10214. [Google Scholar] [CrossRef]
- Ambrosio, A.; Maddalena, P.; Marrucci, L. Molecular Model for Light-Driven Spiral Mass Transport in Azopolymer Films. Phys. Rev. Lett. 2013, 110, 146102. [Google Scholar] [CrossRef]
- Ambrosio, A.; Marrucci, L.; Borbone, F.; Roviello, A.; Maddalena, P. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination. Nat. Commun. 2012, 3, 989. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.K.; Viswanathan, N.K.; Balasubramanian, S.; Kumar, J. Holographic fabrication of polarization selective diffractive optical elements on azopolymer film. Polym. Adv. Technol. 2000, 11, 570–574. [Google Scholar] [CrossRef]
- Priimagi, A.; Shevchenko, A. Azopolymer-based micro- and nanopatterning for photonic applications. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 163–182. [Google Scholar] [CrossRef]
- Viswanathan, N.K.; Kim, D.Y.; Bian, S.; Williams, J.; Liu, W.; Li, L.; Samuelson, L.; Kumar, J.; Tripathy, S.K. Surface relief structures on azo polymer films. J. Mater. Chem. 1999, 9, 1941–1955. [Google Scholar] [CrossRef]
- Reda, F.; Salvatore, M.; Borbone, F.; Maddalena, P.; Oscurato, S.L. Accurate Morphology-Related Diffraction Behavior of Light-Induced Surface Relief Gratings on Azopolymers. ACS Publ. 2022, 4, 953–959. [Google Scholar] [CrossRef]
- Piestun, R.; Shamir, J. Control of wave-front propagation with diffractive elements. Opt. Lett. 1994, 19, 771. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Wang, C.; Zhang, C.; Hu, Y.; Yang, L.; Lao, Z.; Xu, B.; Li, J.; Wu, D.; Chu, J. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl. 2017, 6, e17011. [Google Scholar] [CrossRef] [PubMed]
- Gritsai, Y.; Goldenberg, L.M.; Kulikovska, O.; Stumpe, J. 3D structures using surface relief gratings of azobenzene materials. J. Opt. A Pure Appl. Opt. 2008, 10, 6. [Google Scholar] [CrossRef]
- Alasaarela, T.; Zheng, D.; Huang, L.; Priimagi, A.; Bai, B.; Tervonen, A.; Honkanen, S.; Kuittinen, M.; Turunen, J. Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence. Opt. Lett. 2011, 36, 2411–2413. [Google Scholar] [CrossRef]
- Wang, S.S.; Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 1993, 32, 2606. [Google Scholar] [CrossRef]
- Bykov, D.A.; Bezus, E.A.; Morozov, A.A.; Podlipnov, V.V.; Doskolovich, L.L. Optical properties of guided-mode resonant gratings with linearly varying period. Phys. Rev. A 2022, 106, 053524. [Google Scholar] [CrossRef]
- Lee, S.; Kang, H.S.; Park, J. Directional Photofluidization Lithography: Micro/Nanostructural Evolution by Photofluidic Motions of Azobenzene Materials. Adv. Mater. 2012, 24, 2069–2103. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kang, B.; Yang, S.; Drew, C.; Samuelson, L.A.; Kumar, J. Facile Patterning of Periodic Arrays of Metal Oxides. Adv. Mater. 2006, 18, 1622–1626. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Ivliev, N.A.; Fomchenkov, S.A.; Khonina, S.N. Multi-Spiral Laser Patterning of Azopolymer Thin Films for Generation of Orbital Angular Momentum Light. Nanomaterials 2023, 13, 612. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Kuchmizhak, A.A.; Gurbatov, S.O.; Juodkazis, S.; Khonina, S.N.; Kulchin Yu, N. Phase singularities and optical vortices in photonics. Phys. Uspekhi 2022, 35, 789–811. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Coerwinkel, R.P.C.; Kristensen, M.; Woerdman, J.P. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Angular Momentum 2016, 179–185. [Google Scholar] [CrossRef]
- Ni, J.; Liu, S.; Hu, G.; Hu, Y.; Lao, Z.; Li, J.; Zhang, Q.; Wu, D.; Dong, S.; Chu, J.; et al. Giant helical dichroism of single chiral nanostructures with photonic orbital angular momentum. ACS 2021, 15, 2893–2900. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Sun, J.; Sun, X.; Wang, P.; Zhou, X.; Pan, J.; Zhang, Y.; Su, Y. A Microstructured Laser With Modulated Period for Beam Control. IEEE Photonics J. 2022, 14, 1–6. [Google Scholar] [CrossRef]
- Ma, J.; Li, P.; Gu, Y. Characteristics of Spiral Patterns Formed by Coaxial Interference between Two Vortex Beams with Different Radii of Wavefront Curvatures. Photonics 2021, 8, 393. [Google Scholar] [CrossRef]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1959, 253, 358–379. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Wang, J.; Zhou, G.; Ikeda, T.; Jiang, L. Inkless Rewritable Photonic Crystals Paper Enabled by a Light-Driven Azobenzene Mesogen Switch. ACS Appl. Mater. Interfaces 2021, 13, 12383–12392. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaleye, T.M.; Raposo, M.; Ribeiro, P.A. Generation of Orbital Angular Momentum Light by Patterning Azopolymer Thin Films. Photonics 2023, 10, 1319. https://doi.org/10.3390/photonics10121319
Olaleye TM, Raposo M, Ribeiro PA. Generation of Orbital Angular Momentum Light by Patterning Azopolymer Thin Films. Photonics. 2023; 10(12):1319. https://doi.org/10.3390/photonics10121319
Chicago/Turabian StyleOlaleye, Temitope M., Maria Raposo, and Paulo A. Ribeiro. 2023. "Generation of Orbital Angular Momentum Light by Patterning Azopolymer Thin Films" Photonics 10, no. 12: 1319. https://doi.org/10.3390/photonics10121319
APA StyleOlaleye, T. M., Raposo, M., & Ribeiro, P. A. (2023). Generation of Orbital Angular Momentum Light by Patterning Azopolymer Thin Films. Photonics, 10(12), 1319. https://doi.org/10.3390/photonics10121319