Narrow-Linewidth Tunable Fiber Laser Based on Laser-Induced Graphene Heated Fiber Bragg Grating with Low Voltage
Abstract
:1. Introduction
2. Fabrication and Characteristics of the LIG-H
3. Experimental Scheme and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Omiya, T.; Yoshida, M.; Nakazawa, M. 400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE. Opt. Express 2013, 21, 2632–2641. [Google Scholar] [CrossRef] [PubMed]
- Seimetz, M.; Molle, L.; Gross, D.-D.; Auth, B.; Freund, R. Coherent RZ-8PSK transmission at 30Gbit/s over 1200km employing homodyne detection with digital carrier phase estimation. In Proceedings of the 33rd European Conference and Exhibition of Optical Communication, Berlin, Germany, 16–20 September 2007; pp. 1–2. [Google Scholar]
- Yeh, C.-H.; Chen, J.-Y.; Chen, H.-Z.; Chow, C.-W. Selectable dual-wavelength erbium-doped fiber laser with stable single-longitudinal-mode utilizing eye-type compound-ring configuration. Opt. Laser Technol. 2016, 82, 72–75. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, L.; Xie, W.; Cheng, R.; Liu, Z.; Wei, W.; Dong, Y. Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source. Opt. Express 2019, 27, 19359–19368. [Google Scholar] [CrossRef]
- Cao, R.; Ding, H.; Peng, Z.; Kim, K.-J.; Ohodnicki, P.; Yan, A.; Chen, K.P. Fiber optical sensor for methane detection based on metal-organic framework/silicone polymer coating. In Proceedings of the CLEO: QELS_Fundamental Science, San Jose, CA, USA, 13–18 May 2018; p. JW2A-168. [Google Scholar]
- Lyu, S.; Wu, Z.; Shi, X.; Wu, Q. Optical Fiber Biosensors for Protein Detection: A Review. Photonics 2022, 9, 987. [Google Scholar] [CrossRef]
- Diaz, S. Stable Dual-Wavelength Erbium Fiber Ring Laser With Optical Feedback for Remote Sensing. J. Light. Technol. 2016, 34, 4591–4595. [Google Scholar] [CrossRef]
- Rajabvand, M.; Behnia, F. In-Fiber Wavelength-Selective Modulation of WDM Channels With Performance Analysis. J. Light. Technol. 2010, 28, 141–147. [Google Scholar] [CrossRef]
- Peng, P.C.; Tseng, H.Y.; Chi, S. A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode. IEEE Photonics Technol. Lett. 2003, 15, 661–663. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.H.; Chow, C.W.; Wu, Y.F.; Lin, Y.H.; Cheng, B.C.; Chen, J.H. Using optimal cavity loss and saturable-absorber passive filter for stable and tunable dual-wavelength erbium fiber laser in single-longitudinal-mode operation. Laser Phys. Lett. 2011, 8, 672–677. [Google Scholar] [CrossRef]
- Naveen, J.; Jawaid, M.; Zainudin, E.S.; Sultan, M.T.H.; Yahaya, R.B. Selection of Natural Fiber for Hybrid Kevlar/Natural Fiber Reinforced Polymer Composites for Personal Body Armor by Using Analytical Hierarchy Process. Front. Mater. 2018, 5, 52. [Google Scholar] [CrossRef]
- Guadagno, L.; Raimondo, M.; Vittoria, V.; Vertuccio, L.; Naddeo, C.; Russo, S.; De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V. Development of epoxy mixtures for application in aeronautics and aerospace. Rsc Adv. 2014, 4, 15474–15488. [Google Scholar] [CrossRef]
- Luo, S.; Liu, T. Graphite Nanoplatelet Enabled Embeddable Fiber Sensor for in Situ Curing Monitoring and Structural Health Monitoring of Polymeric Composites. Acs Appl. Mater. Interfaces 2014, 6, 9314–9320. [Google Scholar] [CrossRef] [PubMed]
- Karim, N.; Zhang, M.; Afroj, S.; Koncherry, V.; Potluri, P.; Novoselov, K.S. Graphene-based surface heater for de-icing applications. Rsc Adv. 2018, 8, 16815–16823. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wang, Y.; Liu, F.; Luo, S. Laser-Induced Graphene Paper Heaters with Multimodally Patternable Electrothermal Performance for Low-Energy Manufacturing of Composites. Acs Appl. Mater. Interfaces 2020, 12, 23284–23297. [Google Scholar] [CrossRef] [PubMed]
- Bobinger, M.R.; Romero, F.J.; Salinas-Castillo, A.; Becherer, M.; Lugli, P.; Morales, D.P.; Rodriguez, N.; Rivadeneyra, A. Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon 2019, 144, 116–126. [Google Scholar] [CrossRef]
- Wan, Z.; Nguyen, N.-T.; Gao, Y.; Li, Q. Laser induced graphene for biosensors. Sustain. Mater. Technol. 2020, 25, e00205. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhang, P.; Liu, F.; Luo, S. Laser-Induced Freestanding Graphene Papers: A New Route of Scalable Fabrication with Tunable Morphologies and Properties for Multifunctional Devices and Structures. Small 2018, 14, 1802350. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Wang, Y.; Wang, G.; Liu, F.; Zhai, Y.; Luo, Y. Hybrid spray-coating, laser-scribing and ink-dispensing of graphene sensors/arrays with tunable piezoresistivity for in situ monitoring of composites. Carbon 2018, 139, 437–444. [Google Scholar] [CrossRef]
- Mahmood, F.; Zhang, C.; Xie, Y.; Stalla, D.; Lin, J.; Wan, C. Transforming lignin into porous graphene via direct laser writing for solid-state supercapacitors. Rsc Adv. 2019, 9, 22713–22720. [Google Scholar] [CrossRef] [Green Version]
- Manz, H.; Huber, H. Experimental and numerical study of a duct/heat exchanger unit for building ventilation. Energy Build. 2000, 32, 189–196. [Google Scholar] [CrossRef]
- Zhao, Y.; Liao, Y.B. Discrimination methods and demodulation techniques for fiber Bragg grating sensors. Opt. Lasers Eng. 2004, 41, 1–18. [Google Scholar] [CrossRef]
- Jia, Z.a.; Qiao, X.; Li, M.; Fu, H.; Liu, Y. Nonlinear phenomena of fiber Bragg grating temperature sensing. Acta Photonica Sin. 2003, 32, 844–847. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, B.; Yang, F.; Shen, L.; Zhou, S.; Wang, S.; Wang, S. Narrow-Linewidth Tunable Fiber Laser Based on Laser-Induced Graphene Heated Fiber Bragg Grating with Low Voltage. Photonics 2023, 10, 136. https://doi.org/10.3390/photonics10020136
Gu B, Yang F, Shen L, Zhou S, Wang S, Wang S. Narrow-Linewidth Tunable Fiber Laser Based on Laser-Induced Graphene Heated Fiber Bragg Grating with Low Voltage. Photonics. 2023; 10(2):136. https://doi.org/10.3390/photonics10020136
Chicago/Turabian StyleGu, Baoshan, Feng Yang, Li Shen, Shouhuan Zhou, Shutong Wang, and Sha Wang. 2023. "Narrow-Linewidth Tunable Fiber Laser Based on Laser-Induced Graphene Heated Fiber Bragg Grating with Low Voltage" Photonics 10, no. 2: 136. https://doi.org/10.3390/photonics10020136
APA StyleGu, B., Yang, F., Shen, L., Zhou, S., Wang, S., & Wang, S. (2023). Narrow-Linewidth Tunable Fiber Laser Based on Laser-Induced Graphene Heated Fiber Bragg Grating with Low Voltage. Photonics, 10(2), 136. https://doi.org/10.3390/photonics10020136