Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search
Abstract
:1. Introduction
2. Master Equation for a Qubit Driven by Coherent and Incoherent Controls
3. Incoherent Control
4. Objective Functional for Single-Qubit Gate Generation
5. Gradient of the Objective Functional
6. Numerical Optimization for Generation of and Gates
7. Discussion: Quantum Gate Generation as Optimization over Complex Stiefel Manifolds
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GKSL | Gorini–Kossakowski–Sudarshan–Lindblad |
GRAPE | GRadient Ascent Pulse Engineering |
References
- Koch, C.P.; Boscain, U.; Calarco, T.; Dirr, G.; Filipp, S.; Glaser, S.J.; Kosloff, R.; Montangero, S.; Schulte-Herbrüggen, T.; Sugny, D.; et al. Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quantum Technol. 2022, 9, 19. [Google Scholar] [CrossRef]
- Tannor, D.J. Introduction to Quantum Mechanics: A Time Dependent Perspective; University Science Books: Sausilito, CA, USA, 2007. [Google Scholar]
- Brif, C.; Chakrabarti, R.; Rabitz, H. Control of quantum phenomena: Past, present and future. New J. Phys. 2010, 12, 075008. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.W.; Pechen, A.; Feng, X.J.; Dominy, J.; Beltrani, V.J.; Rabitz, H. Why is chemical synthesis and property optimization easier than expected? Phys. Chem. Chem. Phys. 2011, 13, 10048–10070. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, D. Introduction to Quantum Control and Dynamics, 2nd ed.; Chapman & Hall/CRC: New York, NY, USA, 2021. [Google Scholar]
- Pechen, A.; Rabitz, H. Teaching the environment to control quantum systems. Phys. Rev. A 2006, 73, 062102. [Google Scholar] [CrossRef] [Green Version]
- Pechen, A. Incoherent light as a control resource: A route to complete controllability of quantum systems. arXiv 2012, arXiv:1212.2253. [Google Scholar]
- Pechen, A. Engineering arbitrary pure and mixed quantum states. Phys. Rev. A 2011, 84, 042106. [Google Scholar] [CrossRef] [Green Version]
- Morzhin, O.V.; Pechen, A.N. Minimal time generation of density matrices for a two-level quantum system driven by coherent and incoherent controls. Int. J. Theor. Phys. 2021, 60, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Lokutsievskiy, L.; Pechen, A. Reachable sets for two-level open quantum systems driven by coherent and incoherent controls. J. Phys. A Math. Theor. 2021, 54, 395304. [Google Scholar] [CrossRef]
- Morzhin, O.; Pechen, A. Generation of density matrices for two qubits using coherent and incoherent controls. Lobachevskii J. Math. 2021, 42, 2401–2412. [Google Scholar] [CrossRef]
- Petruhanov, V.N.; Pechen, A.N. Optimal control for state preparation in two-qubit open quantum systems driven by coherent and incoherent controls via GRAPE approach. Int. J. Mod. Phys. A 2022, 37, 2243017. [Google Scholar] [CrossRef]
- Wu, R.; Pechen, A.; Brif, C.; Rabitz, H. Controllability of open quantum systems with Kraus-map dynamics. J. Phys. A Math. Theor. 2007, 40, 5681–5693. [Google Scholar] [CrossRef]
- Zhang, W.; Saripalli, R.; Leamer, J.; Glasser, R.; Bondar, D. All-optical input-agnostic polarization transformer via experimental Kraus-map control. Eur. Phys. J. Plus 2022, 137, 930. [Google Scholar] [CrossRef]
- Aharonov, D.; Kitaev, A.; Nisan, N. Quantum circuits with mixed states. arXiv 1998, arXiv:quant-ph/9806029. [Google Scholar]
- Tarasov, V.E. Quantum computer with mixed states and four-valued logic. J. Phys. A Math. Gen. 2002, 35, 5207. [Google Scholar] [CrossRef] [Green Version]
- Verstraete, F.; Wolf, M.M.; Cirac, J.I. Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation. Nat. Phys. 2009, 5, 633. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.; Negretti, A.; Ankerhold, J.; Calarco, T.; Stockburger, J.T. Optimal control of open quantum systems: Cooperative effects of driving and dissipation. Phys. Rev. Lett. 2011, 107, 130404. [Google Scholar] [CrossRef] [Green Version]
- Diehl, S.; Micheli, A.; Kantian, A.; Kraus, B.; Büchler, H.P.; Zoller, P. Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 2008, 4, 878–883. [Google Scholar] [CrossRef] [Green Version]
- Weimer, H.; Müller, M.; Lesanovsky, I.; Zoller, P.; Büchler, H.P. A Rydberg quantum simulator. Nat. Phys. 2010, 6, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, J.T.; Schindler, P.; Ghne, O.; Monz, T.; Chwalla, M.; Roos, C.F.; Hennrich, M.; Blatt, R. Experimental multiparticle entanglement dynamics induced by decoherence. Nat. Phys. 2010, 6, 943–946. [Google Scholar] [CrossRef] [Green Version]
- Pastawski, F.; Clemente, L.; Cirac, J.I. Quantum memories based on engineered dissipation. Phys. Rev. A 2011, 83, 012304. [Google Scholar] [CrossRef] [Green Version]
- Børkje, K. Scheme for steady-state preparation of a harmonic oscillator in the first excited state. Phys. Rev. A 2014, 90, 023806. [Google Scholar] [CrossRef] [Green Version]
- Kienzler, D.; Lo, H.-Y.; Keitch, B.; de Clercq, L.; Leupold, F.; Lindenfelser, F.; Marinelli, M.; Negnevitsky, V.; Home, J.P. Quantum harmonic oscillator state synthesis by reservoir engineering. Science 2015, 347, 53–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salamon, P.; Hoffmann, K.H.; Tsirlin, A. Optimal control in a quantum cooling problem. Appl. Math. Lett. 2012, 25, 1263–1266. [Google Scholar] [CrossRef] [Green Version]
- Grigoriu, A.; Rabitz, H.; Turinici, G. Controllability analysis of quantum systems immersed within an engineered environment. J. Math. Chem. 2012, 51, 1548–1560. [Google Scholar] [CrossRef] [Green Version]
- Bergholm, V.; Schulte-Herbrüggen, T. How to transfer between arbitrary n-qubit quantum states by coherent control and simplest switchable noise on a single qubit. arXiv 2012, arXiv:1206.4945. [Google Scholar]
- Baggio, G.; Ticozzi, F.; Viola, L. Quantum state preparation by controlled dissipation in finite time: From classical to quantum controllers. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 1072–1077. [Google Scholar] [CrossRef] [Green Version]
- Davidovich, L.; Taddei, M.M.; Zagury, N.; de Matos Filho, R.L. Quantum metrology of open dynamical systems: Precision limits through environment control. New Dir. Quantum Control. Landsc. 2013, 29, 1–24. [Google Scholar]
- Tannor, D.J.; Kazakov, V.; Orlov, V. Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds. In Time-Dependent Quantum Molecular Dynamics; Broeckhove, J., Lathouwers, L., Eds.; Springer: Boston, MA, USA, 1992; pp. 347–360. [Google Scholar] [CrossRef]
- Morzhin, O.V.; Pechen, A.N. Krotov method for optimal control of closed quantum systems. Russ. Math. Surv. 2019, 74, 851–908. [Google Scholar] [CrossRef] [Green Version]
- Goerz, M.H.; Reich, D.M.; Koch, C.P. Optimal control theory for a unitary operation under dissipative evolution. New J. Phys. 2014, 16, 055012. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Rabitz, H. A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator. J. Chem. Phys. 1998, 109, 385–391. [Google Scholar] [CrossRef]
- Khaneja, N.; Reiss, T.; Kehlet, C.; Schulte-Herbrüggen, T.; Glaser, S. Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 2005, 172, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Dalgaard, M.; Motzoi, F.; Jensen, J.H.M.; Sherson, J. Hessian-based optimization of constrained quantum control. Phys. Rev. A 2020, 102, 042612. [Google Scholar] [CrossRef]
- De Fouquieres, P.; Schirmer, S.; Glaser, S.; Kuprov, I. Second order gradient ascent pulse engineering. J. Magn. Reson. 2011, 212, 412–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pechen, A.; Borisenok, S.; Fradkov, A. Energy control in a quantum oscillator using coherent control and engineered environment. Chaos Solit. Fractals. 2022, 164, 112687. [Google Scholar] [CrossRef]
- Caneva, T.; Calarco, T.; Montangero, S. Chopped random-basis quantum optimization. Phys. Rev. A 2011, 84, 022326. [Google Scholar] [CrossRef] [Green Version]
- Judson, R.S.; Rabitz, H. Teaching lasers to control molecules. Phys. Rev. Lett. 1992, 68, 1500–1503. [Google Scholar] [CrossRef]
- Dong, D.Y.; Chen, C.L.; Tarn, T.J.; Pechen, A.; Rabitz, H. Incoherent control of quantum systems with wavefunction controllable subspaces via quantum reinforcement learning. IEEE Trans. Syst. Man. Cybern. B Cybern. 2008, 38, 957–962. [Google Scholar] [CrossRef]
- Hadipour, M.; Haseli, S.; Dolatkhah, H.; Haddadi, S.; Czerwinski, A. Quantum speed limit for a moving qubit inside a leaky cavity. Photonics 2022, 9, 875. [Google Scholar] [CrossRef]
- Romero, K.M.F.; Laverde, G.U.; Ardila, F.T. Optimal control of one-qubit gates. J. Phys. A Math. Gen. 2003, 36, 841. [Google Scholar] [CrossRef] [Green Version]
- Grace, M.; Brif, C.; Rabitz, H.; Walmsley, I.A.; Kosut, R.L.; Lidar, D.A. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles. J. Phys. B At. Mol. Opt. Phys. 2007, 40, S103–S125. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.-M.; Wu, R.-B. Minimum-time control of local quantum gates for two-qubit homonuclear systems. IFAC Proc. Vol. 2013, 46, 359–364. [Google Scholar] [CrossRef]
- Malinovsky, V.S.; Sola, I.R.; Vala, J. Phase-controlled two-qubit quantum gates. Phys. Rev. A 2014, 89, 032301. [Google Scholar] [CrossRef] [Green Version]
- Ghaeminezhad, N.; Cong, S. Preparation of Hadamard gate for open quantum systems by the Lyapunov control method. IEEE/CAA J. Autom. Sin. 2018, 5, 733–740. [Google Scholar] [CrossRef]
- Li, J.-F.; Xin, Z.-X.; Hu, J.-R.; He, D.-H. Quantum optimal control for Pauli operators based on spin-1/2 system. Int. J. Theor. Phys. 2022, 61, 268. [Google Scholar] [CrossRef]
- Hegde, S.S.; Zhang, J.; Suter, D. Toward the speed limit of high-fidelity two-qubit gates. Phys. Rev. Lett. 2022, 128, 230502. [Google Scholar] [CrossRef]
- Jandura, S.; Pupillo, G. Time-optimal two- and three-qubit gates for Rydberg atoms. Quantum 2022, 6, 712. [Google Scholar] [CrossRef]
- Pechen, A.N.; Tannor, D.J. Quantum control landscape for a ∧-atom in the vicinity of second-order traps. Isr. J. Chem. 2012, 52, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Rabitz, H.A.; Hsieh, M.M.; Rosenthal, C.M. Quantum optimally controlled transition landscapes. Science 2004, 303, 1998–2001. [Google Scholar] [CrossRef] [PubMed]
- Pechen, A.N.; Tannor, D.J. Are there traps in quantum control landscapes? Phys. Rev. Lett. 2011, 106, 120402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Fouquieres, P.; Schirmer, S.G. A closer look at quantum control landscapes and their implication for control optimization. Infin. Dimens. Anal. Quantum Probab. Relat. 2013, 16, 1350021. [Google Scholar] [CrossRef] [Green Version]
- Pechen, A.N.; Tannor, D.J. Control of quantum transmission is trap free. Can. J. Chem. 2014, 92, 157–159. [Google Scholar] [CrossRef]
- Larocca, M.; Poggi, P.M.; Wisniacki, D.A. Quantum control landscape for a two-level system near the quantum speed limit. J. Phys. A Math. Theor. 2018, 51, 385305. [Google Scholar] [CrossRef] [Green Version]
- Zhdanov, D.V. Comment on ‘Control landscapes are almost always trap free: A geometric assessment’. J. Phys. A Math. Theor. 2018, 51, 508001. [Google Scholar] [CrossRef] [Green Version]
- Russell, B.; Wu, R.; Rabitz, H. Reply to comment on ‘control landscapes are almost always trap free: A geometric assessment’. J. Phys. A Math. Theor. 2018, 51, 508002. [Google Scholar] [CrossRef]
- Pechen, A.N.; Il’in, N.B. On extrema of the objective functional for short-time generation of single-qubit quantum gates. Izv. Math 2016, 80, 1200–1212. [Google Scholar] [CrossRef] [Green Version]
- Volkov, B.O.; Morzhin, O.V.; Pechen, A.N. Quantum control landscape for ultrafast generation of single-qubit phase shift quantum gates. J. Phys. A Math. Theor. 2021, 54, 215303. [Google Scholar] [CrossRef]
- Dalgaard, M.; Motzoi, F.; Sherson, J. Predicting quantum dynamical cost landscapes with deep learning. Phys. Rev. A 2022, 105, 012402. [Google Scholar] [CrossRef]
- Pechen, A.; Prokhorenko, D.; Wu, R.; Rabitz, H. Control landscapes for two-level open quantum systems. J. Phys. A Math. Theor. 2008, 41, 045205. [Google Scholar] [CrossRef] [Green Version]
- Oza, A.; Pechen, A.; Dominy, J.; Beltrani, V.; Moore, K.; Rabitz, H. Optimization search effort over the control landscapes for open quantum systems with Kraus-map evolution. J. Phys. A Math. Theor. 2009, 42, 205305. [Google Scholar] [CrossRef]
- Wilcox, R.M. Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 1967, 8, 962. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petruhanov, V.N.; Pechen, A.N. Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search. Photonics 2023, 10, 220. https://doi.org/10.3390/photonics10020220
Petruhanov VN, Pechen AN. Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search. Photonics. 2023; 10(2):220. https://doi.org/10.3390/photonics10020220
Chicago/Turabian StylePetruhanov, Vadim N., and Alexander N. Pechen. 2023. "Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search" Photonics 10, no. 2: 220. https://doi.org/10.3390/photonics10020220
APA StylePetruhanov, V. N., & Pechen, A. N. (2023). Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search. Photonics, 10(2), 220. https://doi.org/10.3390/photonics10020220