Deep Sub–Wavelength Focusing Metalens at Terahertz Frequency
Abstract
1. Introduction
2. Design and Theoretical Analysis
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ako, R.T.; Upadhyay, A.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S. Dielectrics for Terahertz Metasurfaces: Material Selection and Fabrication Techniques. Adv. Opt. Mater. 2019, 8, 1900750. [Google Scholar] [CrossRef]
- Woodward, R.M.; Cole, B.E.; Wallace, V.P.; Pye, R.J.; Arnone, D.D.; Linfield, E.H.; Pepper, M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 2002, 47, 3853–3863. [Google Scholar] [CrossRef]
- Pickwell, E.; Wallace, V.P. Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 2006, 39, R301–R310. [Google Scholar] [CrossRef]
- Yu, C.; Fan, S.; Sun, Y. Pickwell-Macpherson, E. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. Quant. Imaging Med. Surg. 2012, 2, 33–45. [Google Scholar]
- Nikitkina, A.I.; Bikmulina, P.Y.; Gafarova, E.R.; Kosheleva, N.V.; Efremov, Y.M.; Bezrukov, E.A.; Butnaru, D.V.; Dolganova, I.N.; Chernomyrdin, N.V.; Cherkasova, O.P.; et al. Terahertz radiation and the skin: A review. J. Biomed. Opt. 2021, 26, 043005. [Google Scholar] [CrossRef]
- Peralta, X.G.; Lipscomb, D.; Wilmink, G.J.; Echchgadda, I. Terahertz spectroscopy of human skin tissue models with different melanin content. Biomed. Opt. Express 2019, 10, 2942. [Google Scholar] [CrossRef]
- Chernomyrdin, N.V.; Schadko, A.O.; Lebedev, S.P.; Tolstoguzov, V.L.; Kurlov, V.N.; Reshetov, I.V.; Spektor, I.E.; Skorobogatiy, M.; Yurchenko, S.O.; Zaytsev, K.I. Solid immersion terahertz imaging with sub–wavelength resolution. Appl. Phys. Lett. 2017, 110, 221109. [Google Scholar]
- Kurvits, J.A.; Jiang, M.; Zia, R. Comparative analysis of imaging configurations and objectives for Fourier microscopy. J. Opt. Soc. Am. A 2015, 32, 2082–2092. [Google Scholar] [CrossRef]
- Huo, P.; Zhang, S.; Liang, Y.; Lu, Y.; Xu, T. Hyperbolic Metamaterials and Metasurfaces: Fundamentals and Applications. Adv. Opt. Mater. 2019, 7, 1801616. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, H.; Li, Z.; Yuan, H.; Cao, L.; Luo, Z.; Zhang, K.; Zhang, Z.; Wen, Z.; Zhu, L.; et al. All–dielectric metalens for terahertz wave imaging. Opt. Express 2018, 26, 14132. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Feng, S.; Guo, H.; Li, C. A small–spot–size and polarization–insensitive flat lens employing dielectric metasurface in the terahertz region. Opt. Commun. 2020, 459, 125083. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Z.; Li, Z.; Luo, Z.; Jiang, X.; Wen, Z.; Zhu, L.; Zhou, X.; Li, H.; Shang, Z.; et al. Sub–wavelength tight–focusing of terahertz waves by polarization–independent high–numerical–aperture dielectric metalens. Opt. Express 2018, 26, 29817–29825. [Google Scholar] [CrossRef] [PubMed]
- Danila, O. Polyvinylidene Fluoride–Based Metasurface for High–Quality Active Switching and Spectrum Shaping in the Terahertz G–Band. Polymers 2021, 13, 1860. [Google Scholar] [CrossRef]
- Liang, Y.; Wei, Z.; Guo, J.; Wang, F.; Meng, H.; Liu, H. Metalenses Based on Symmetric Slab Waveguide and c–TiO2: Efficient Polarization–Insensitive Focusing at Visible Wavelengths. Nanomaterials 2018, 8, 699. [Google Scholar] [CrossRef]
- Dănilă, O.; Mănăilă-Maximean, D.; Bărar, A.; Loiko, V.A. Non–Layered Gold–Silicon and All–Silicon Frequency–Selective Metasurfaces for Potential Mid–Infrared Sensing Applications. Sensors 2021, 21, 5600. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Shu, Y.; Wu, L.; Lu, L.; Qi, K.; Che, Y.; Li, L.; Yin, H. High numerical aperture and large focusing efficiency metalens based on multilayer transmitarray elements. Opt. Laser. Eng. 2021, 147, 106734. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, H.; Wang, F.; Meng, H.; Guo, J.; Li, J.; Wei, Z. High–Efficiency, Near–Diffraction Limited, Dielectric Metasurface Lenses Based on Crystalline Titanium Dioxide at Visible Wavelengths. Nanomaterials 2018, 8, 288. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Khorasaninejad, M.; Shi, Z.; Sanjeev, V.; Capasso, F. Immersion Meta–Lenses at Visible Wavelengths for Nanoscale Imaging. Nano Lett. 2017, 17, 3188–3194. [Google Scholar] [CrossRef]
- Liang, H.; Lin, Q.; Xie, X.; Sun, Q.; Wang, Y.; Zhou, L.; Liu, L.; Yu, X.; Zhou, J.; Krauss, T.F.; et al. Ultrahigh Numerical Aperture Metalens at Visible Wavelengths. Nano Lett. 2018, 18, 4460–4466. [Google Scholar] [CrossRef]
- Yang, M.; Ruan, D.; Du, L.; Qin, C.; Li, Z.; Lin, C.; Chen, G.; Wen, Z. Subdiffraction focusing of total electric fields of terahertz wave. Opt. Commun. 2020, 458, 124764. [Google Scholar] [CrossRef]
- Ruan, D.; Li, Z.; Du, L.; Zhou, X.; Zhu, L.; Lin, C.; Yang, M.; Chen, G.; Yuan, W.; Liang, G.; et al. Realizing a terahertz far–field sub–diffraction optical needle with sub–wavelength concentric ring structure array. Appl. Optics. 2018, 57, 7905–7909. [Google Scholar] [CrossRef]
- Yuan, G.H.; Lin, Y.H.; Tsai, D.P.; Zheludev, N.I. Superoscillatory quartz lens with effective numerical aperture greater than one. Appl. Phys. Lett. 2020, 117, 021106. [Google Scholar] [CrossRef]
- Huang, K.; Liu, H.; Garcia-Vidal, F.J.; Hong, M.; Luk Yanchuk, B.; Teng, J.; Qiu, C. Ultrahigh–capacity non–periodic photon sieves operating in visible light. Nat. Commun. 2015, 6, 7059. [Google Scholar] [CrossRef]
- Rogers, E.T.F.; Lindberg, J.; Roy, T.; Savo, S.; Chad, J.E.; Dennis, M.R.; Zheludev, N.I. A super–oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 2012, 11, 432–435. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Li, H.; Zhu, Y.; Yu, Y. Controllable design of super–oscillatory lenses with multiple sub–diffraction–limit foci. Sci. Rep. 2017, 7, 1335. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, S.M.; Kino, G.S. Solid Immersion Microscopy. Appl. Phys. Lett. 1990, 57, 2615–2616. [Google Scholar] [CrossRef]
- Liu, T.; Tan, J.; Liu, J.; Wang, H. Vectorial design of super–oscillatory lens. Opt. Express 2013, 21, 15090. [Google Scholar] [CrossRef]
x Linearly Polarized Light | y Linearly Polarized Light | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Z(λ) | Intensity | FWHMx | FWHMy | SLRx (%) | SLRy (%) | Intensity | FWHMx | FWHMy | SLRx (%) | SLRy (%) |
21.43 | 2701.09 | 0.24 λ | 0.2 λ | 20.57 | 6.70 | 2701.38 | 0.2 λ | 0.238 λ | 6.75 | 20.14 |
21.46 | 1893.29 | 0.25 λ | 0.23 λ | 22 | 7.87 | 1893.5 | 0.21 λ | 0.24 λ | 7.87 | 22 |
21.47 | 1293.78 | 0.25 λ | 0.232 λ | 24.19 | 9.50 | 1293.9 | 0.23 λ | 0.24 λ | 9.51 | 24.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Shen, X.; Wen, Z. Deep Sub–Wavelength Focusing Metalens at Terahertz Frequency. Photonics 2023, 10, 222. https://doi.org/10.3390/photonics10020222
Yang M, Shen X, Wen Z. Deep Sub–Wavelength Focusing Metalens at Terahertz Frequency. Photonics. 2023; 10(2):222. https://doi.org/10.3390/photonics10020222
Chicago/Turabian StyleYang, Mengyu, Xin Shen, and Zhongquan Wen. 2023. "Deep Sub–Wavelength Focusing Metalens at Terahertz Frequency" Photonics 10, no. 2: 222. https://doi.org/10.3390/photonics10020222
APA StyleYang, M., Shen, X., & Wen, Z. (2023). Deep Sub–Wavelength Focusing Metalens at Terahertz Frequency. Photonics, 10(2), 222. https://doi.org/10.3390/photonics10020222