Luminous Flux in Ex-Vivo Porcine Eyes during Endoillumination and during Transscleral Illumination Depending on the Transmission Properties of the Eyewall
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lange, O. Zur Diagnose des intraokularen Sarkoms. Klin. Monatsbl. Augenheilkd. 1884, 1888, 410. [Google Scholar]
- Langenhan, F. (Ed.) Ophthalmodiaphanoskopie; Springer: Vienna, Austria, 1920. [Google Scholar]
- Wood, E.H. Study of transillumination of the eye. Arch. Ophthalmol. 1939, 22, 653–666. [Google Scholar] [CrossRef]
- Neubauer, H. Bright Light Operative Localization. Int. Ophthalmol. Clin. 1968, 8, 205–209. [Google Scholar] [CrossRef]
- Pasyechnikova, N.; Naumenko, V.; Korol, A.; Zadorozhnyy, O. Digital imaging of the fundus with long-wave illumination. Klin. Oczna 2009, 111, 18–20. [Google Scholar]
- Laforest, T.; Künzi, M.; Kowalczuk, L.; Carpentras, D.; Behar-Cohen, F.; Moser, C. Transscleral Optical Phase Imaging of the Human Retina. Nat. Photonics 2020, 14, 439–445. [Google Scholar] [CrossRef]
- Osmond, A.H. New electrode transilluminator. Br. J. Ophthalmol. 1954, 38, 757–762. [Google Scholar] [CrossRef] [Green Version]
- Purkinje, J.E. Beobachtungen und Versuche zur Physiologie der Sinne von Johann Purkinje, Doctor und Professor der Medicin zu Breslau. Zweites Bändchen. Neue Beiträge zur Kenntniss des Sehens in Subjectiver Hinsicht; Zweites Bändchen; Reimer: Prague, Czech Republic, 1825. [Google Scholar]
- Schirmer, K.E. Transillumination and Visualization of the Anterior Fundus. Arch. Ophthalmol. 1964, 71, 475–480. [Google Scholar]
- Oshima, Y.; Awh, C.C.; Tano, Y. Self-retaining 27-gauge transconjunctival chandelier endoillumination for panoramic viewing during vitreous surgery. Am. J. Ophthalmol. 2007, 143, 166–167. [Google Scholar] [CrossRef]
- Oshima, Y.; Chow, D.R.; Awh, C.C.; Sakaguchi, H.; Tano, Y. Novel mercury vapor illuminator combined with a 27/29-gauge chandelier light fiber for vitreous surgery. Retina 2008, 28, 171–173. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Oshima, Y. Considering the Illumination Choices in Vitreoretinal Surgery. Retin. Physician 2012, 9, 26–31. [Google Scholar]
- Sakaguchi, H.; Oshima, Y.; Nishida, K.; Awh, C.C. A 29/30-gauge dual-chandelier illumination system for panoramic viewing during microincision vitrectomy surgery. Retina 2011, 31, 1231–1233. [Google Scholar] [CrossRef]
- Medizin&Technik. Licht aus Kleinsten Quellen. Available online: https://medizin-und-technik.industrie.de/technik/entwicklung/auge-licht-aus-kleinsten-quellen/ (accessed on 26 October 2022).
- Geuder, AG. News. Available online: https://www.geuder.de/en/news-events/news/?tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bnews%5D=49&cHash=3d4e96f92d46e488670688213bcfd54f (accessed on 26 October 2022).
- Novack, R.L. The CONSTELLATION® Vision System: Assessing the Improvements in Illumination for Vitreoretinal Surgery. Retinal Physician. 2022. Available online: https://www.retinalphysician.com/supplements/2009/february-2009/special-edition/the-constellation-vision-system-assessing-the-im (accessed on 4 November 2022).
- Hessling, M.; Kölbl, P.S.; Lingenfelder, C.; Koch, F.H.J. Kleinste LED-Illuminatoren für die Netzhautchirurgie. BioPhotonik 2015, 1, 32–35. [Google Scholar]
- Hessling, M.; Koelbl, P.S.; Lingenfelder, C.; Koch, F. Miniature LED Endoilluminators for Vitreoretinal Surgery. In Proceedings of the European Conferences on Biomedical Optics, Munich, Germany, 21–25 June 2015; p. 95421A. [Google Scholar]
- Lingenfelder, C.; Koch, F.; Koelbl, P.; Klante, P.; Hessling, M. Transscleral LED illumination pen. Biomed. Eng. Lett. 2017, 7, 311–315. [Google Scholar] [CrossRef]
- Behar-Cohen, F.; Martinsons, C.; Viénot, F.; Zissis, G.; Barlier-Salsi, A.; Cesarini, J.P.; Enouf, O.; Garcia, M.; Picaud, S.; Attia, D. Light-emitting diodes (LED) for domestic lighting: Any risks for the eye? Prog. Retin. Eye Res. 2011, 30, 239–257. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Kamenskikh, T.G.; Tuchin, V.V. Optical Clearing of Human Eye Sclera. In Proceedings of the SPIE BiOS: Biomedical Optics, San Jose, CA, USA, 24–29 January 2009; p. 71631R. [Google Scholar]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Optical properties of human sclera in spectral range 370–2500 nm. Opt. Spectrosc. 2010, 109, 197–204. [Google Scholar] [CrossRef]
- Koelbl, P.S.; Sieber, N.; Lingenfelder, C.; Koch, F.H.J.; Deuchler, S.; Hessling, M. Pressure dependent direct transtissue transmission of eyewall, sclera and vitreous body in the range of 350-1050nm. Z. Med. Phys. 2020, 30, 201–210. [Google Scholar] [CrossRef]
- Fehler, N.; Lingenfelder, C.; Kupferschmid, S.; Hessling, M. Intraocular reflectance of the ocular fundus and its impact on increased retinal hazard. Z. Med. Phys. 2022, 32, 453–465. [Google Scholar] [CrossRef]
- Chandler, M.J.; Smith, P.J.; Samuelson, D.A.; MacKay, E.O. Photoreceptor density of the domestic pig retina. Vet. Ophthalmol. 1999, 2, 179–184. [Google Scholar] [CrossRef]
- De Schaepdrijver, L.; Simoens, P.; Pollet, L.; Lauwers, H.; De Laey, J.-J. Morphologic and clinical study of the retinal circulation in the miniature pig. B: Fluorescein angiography of the retina. Exp. Eye Res. 1992, 54, 975–985. [Google Scholar] [CrossRef]
- Nicoli, S.; Ferrari, G.; Quarta, M.; Macakuso, C.; Govoni, P.; Dallatana, D.; Santi, P. Porcine sclera as a model of human sclera for in vitro transport experiments histology, SEM, and comparative permeability. Mol. Vis. 2009, 15, 259–266. [Google Scholar]
- Menon, I.A.; Wakeham, D.C.; Persad, S.D.; Avaria, M.; Trope, G.E.; Basu, P.K. Quantitative determination of the melanin contents in ocular tissues from human blue and brown eyes. J. Ocul. Pharmacol. Ther. 1992, 8, 35–42. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Hu, D.-N.; McCormick, S.A.; Ito, S. Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides. Pigment Cell Melanoma Res. 2008, 21, 97–105. [Google Scholar] [CrossRef]
- Weiter, J.J.; Delori, F.C.; Wing, G.L.; Fitch, K.A. Relationship of Senile Macular Degeneration to Ocular Pigmentation. Am. J. Ophthalmol. 1985, 99, 185–187. [Google Scholar] [CrossRef]
- Fehler, N.; Lingenfelder, C.; Kupferschmid, S.; Hessling, M. Determination of the intraocular irradiance and potential retinal hazards at various positions in the eye during transscleral equatorial illumination for different applied pressures. Z. Med. Phys. 2022; in press. [Google Scholar] [CrossRef]
- He, S.; Li, H.; Yan, Y.; Cai, H. Capturing Luminous Flux Entering Human Eyes with a Camera, Part 2: A Field Verification Experiment. LEUKOS 2023, 1–27. [Google Scholar] [CrossRef]
- He, S.; Li, H.; Yan, Y.; Cai, H. Capturing Luminous Flux Entering Human Eyes with a Camera, Part 1: Fundamentals. LEUKOS 2022, 1–19. [Google Scholar] [CrossRef]
- DIN EN ISO 15004-2:2007; Ophthalmic Instruments—Fundamental Requirements and Test Methods—Part 2: Light Hazard Protection (ISO 15004-2:2007); German Version EN ISO 15004-2:2007. Beuth Verlag GmbH: Berlin, Germany, 2007.
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). ICNIRP Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 microM). International Commission on Non-Ionizing Radiation Protection. Health Phys. 1997, 73, 539–554. [Google Scholar]
- Sliney, D.; Aron-Rosa, D.; DeLori, F.; Fankhauser, F.; Landry, R.; Mainster, M.; Marshall, J.; Rassow, B.; Stuck, B.; Trokel, S.; et al. Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: Statement from a task group of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Appl. Opt. 2005, 44, 2162–2176. [Google Scholar] [CrossRef] [Green Version]
- Ham, W.T.; Mueller, H.A.; Ruffolo, J.J.; Guerry, D.; Guerry, R.K. Action Spectrum for Retinal Injury from Near-Ultraviolet Radiation in the Aphakic Monkey. Am. J. Ophthalmol. 1982, 93, 299–306. [Google Scholar] [CrossRef]
- Ham, W.T.; Mueller, H.A.; Sliney, D.H. Retinal sensitivity to damage from short wavelength light. Nature 1976, 260, 153–155. [Google Scholar] [CrossRef]
- Feinwerkoptik Zünd AG. Fallstudie: “Der Kronleuchter”. Available online: https://www.feinwerkoptik-zuend.ch/fallstudie-der-kronleuchter/ (accessed on 14 July 2022).
# Fiber | ⌀ Fiber (G) | I (%) | Light Source | Manufacturer of Fiber | Additional Information |
---|---|---|---|---|---|
1 | 20 | 100 | halogen | Peregrine (New Britain, PA, USA) | light pipe, endoilluminator |
2 | 20 | 100 | halogen | Peregrine (New Britain, PA, USA) | wide-angle, endoilluminator |
3 | 23 | 100 | halogen | D.O.R.C. (Zuidland, The Netherlands) | TotalView Endoillumination Probe, without scleral depressor |
4 | 23 | 100 | halogen | unknown | endoilluminator |
5 | 23 | 100 | halogen | Alcon Laboratories, Inc. (Fort Worth, TX, USA) | endoilluminator |
6 | 23 | 100 | halogen | Aktive S.r.l. (Roma, Italy) | chandelier |
7 | 23 | 100 | halogen | D.O.R.C. (Zuidland, The Netherlands) | Shielded Total Endoillumination Probe, without scleral depressor |
8 | 25 | 100 | halogen | Alcon Laboratories, Inc. (Fort Worth, TX, USA) | chandelier |
9 | 25 | 100 | halogen | Alcon Laboratories, Inc. (Fort Worth, TX, USA) | MLS Torpedo Mini-Light, chandelier |
10 | 27 | 100 | halogen | D.O.R.C. (Zuidland, The Netherlands) | disposable Eckardt Twinlight Chandelier |
11 | 23 | 50 | xenon | D.O.R.C. (Zuidland, The Netherlands) | TotalView Endoillumination Probe, without scleral depressor |
12 | 23 | 50 | xenon | unknown | endoilluminator |
13 | 23 | 80 | xenon | D.O.R.C. (Zuidland, The Netherlands) | Shielded Total Endoillumination Probe, without scleral depressor |
14 | 27 | 100 | xenon | D.O.R.C. (Zuidland, The Netherlands) | disposable Eckardt Twinlight Chandelier |
Halogen Lamp (Fiber #3) | Xenon Lamp (Fiber #11) | |||
---|---|---|---|---|
(lm) | 1.53 ± 5.2 × | 2.49 ± 6.5 × | ||
blue eyes | brown eyes | blue eyes | brown eyes | |
(lm) | 1.70 ± 2.2 × | 1.62 ± 0.7 × | 2.75 ± 3.4 × | 2.63 ± 1.1 × |
(lm) | 0.09 ± 0.5 × | 0.05 ± 0.6 × | 0.14 ± 0.7 × | 0.08 ± 1.0 × |
(lm) | 0.10 ± 0.5 × | 0.05 ± 0.7 × | 0.16 ± 0.8 × | 0.08 ± 1.1 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fehler, N.; Heßling, M. Luminous Flux in Ex-Vivo Porcine Eyes during Endoillumination and during Transscleral Illumination Depending on the Transmission Properties of the Eyewall. Photonics 2023, 10, 362. https://doi.org/10.3390/photonics10040362
Fehler N, Heßling M. Luminous Flux in Ex-Vivo Porcine Eyes during Endoillumination and during Transscleral Illumination Depending on the Transmission Properties of the Eyewall. Photonics. 2023; 10(4):362. https://doi.org/10.3390/photonics10040362
Chicago/Turabian StyleFehler, Nicole, and Martin Heßling. 2023. "Luminous Flux in Ex-Vivo Porcine Eyes during Endoillumination and during Transscleral Illumination Depending on the Transmission Properties of the Eyewall" Photonics 10, no. 4: 362. https://doi.org/10.3390/photonics10040362
APA StyleFehler, N., & Heßling, M. (2023). Luminous Flux in Ex-Vivo Porcine Eyes during Endoillumination and during Transscleral Illumination Depending on the Transmission Properties of the Eyewall. Photonics, 10(4), 362. https://doi.org/10.3390/photonics10040362