Feasibility Demonstration of THz Wave Generation/Modulation Based on Photomixing Using a Single Wavelength-Tunable Laser
Abstract
:1. Introduction
2. Principle of THz Wave Generation and Modulation Using a Single Wavelength-Tunable laser
3. Experimental Setup
4. Experimental Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Zhang, X.; Zhang, Y.; Wang, L.; Yang, J.; Wang, W. A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications. IEEE Access 2017, 5, 6757–6779. [Google Scholar] [CrossRef]
- Song, H.J.; Nagatsuma, T. Present and Future of Terahertz Communications. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 256–263. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Carpintero, G. Recent Progress and Future Prospect of Photonics-Enabled Terahertz Communications Research. IEICE Trans. Electron. 2015, E98C, 1060–1070. [Google Scholar] [CrossRef] [Green Version]
- Song, H.J.; Lee, N. Terahertz Communications: Challenges in the Next Decade. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 105–117. [Google Scholar] [CrossRef]
- Ding, J.; Li, W.; Wang, Y.; Zhang, J.; Wang, F.; Wang, C.; Liu, J.; Wang, K.; Zhao, L.; Liu, C.; et al. 104-m Terahertz-Wave Wireless Transmission Employing 124.8-Gbit/s PS-256QAM Signal. In Proceedings of the Optical Fiber Communication Conference 2022, San Diego, CA, USA, 6–10 March 2022. [Google Scholar] [CrossRef]
- Sizov, F. Terahertz Radiation Detectors: The State-of-the-Art. Semicond. Sci. Technol. 2018, 33, 123001. [Google Scholar] [CrossRef]
- Qi, F.; Fan, S.; Notake, T.; Nawata, K.; Matsukawa, T.; Takida, Y.; Minamide, H. 10 aJ-Level Sensing of Nanosecond Pulse below 10 THz by Frequency Upconversion Detection via DAST Crystal: More than a 4 K Bolometer. Opt. Lett. 2014, 39, 1294. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in Terahertz Communications Accelerated by Photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Takahashi, H.; Kosugi, T.; Hirata, A.; Takeuchi, J.; Murata, K.; Kukutsu, N. 120-GHz-Band Fully Integrated Wireless Link Using QSPK for Realtime 10-Gbit/s Transmission. IEEE Trans. Microw. Theory Tech. 2013, 61, 4745–4753. [Google Scholar] [CrossRef]
- Song, H.J.; Kim, J.Y.; Ajito, K.; Kukutsu, N.; Yaita, M. 50-Gb/s Direct Conversion QPSK Modulator and Demodulator MMICs for Terahertz Communications at 300 GHz. IEEE Trans. Microw. Theory Tech. 2014, 62, 600–609. [Google Scholar] [CrossRef]
- Kumar, A.; Kedia, D.; Singla, S. A Study and Review of RoF Upconversion Techniques for Next Generation Communication Systems BT-Soft Computing: Theories and Applications; Kumar, R., Ahn, C.W., Sharma, T.K., Verma, O.P., Agarwal, A., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 101–112. [Google Scholar]
- Moeller, L.; Federici, J.; Su, K. 2.5Gbit/s Duobinary Signalling with Narrow Bandwidth 0.625 Terahertz Source. Electron. Lett. 2011, 47, 856–858. [Google Scholar] [CrossRef]
- Nagatsuma, T. Generating Millimeter and Terahertz Waves by Photonics for Communications and Sensing. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013. [Google Scholar] [CrossRef]
- Tani, M.; Morikawa, O.; Matsuura, S.; Hangyo, M. Generation of Terahertz Radiation by Photomixing with Dual- and Multiple-Mode Lasers. Semicond. Sci. Technol. 2005, 20, S151. [Google Scholar] [CrossRef]
- Kim, Y.; Kuboki, T.; Kato, K. Demonstration of 600-GHz Wave Beam Forming by Arrayed Light Sources with Arrayed Photomixers. IEEE Photonics Technol. Lett. 2021, 33, 1435–1438. [Google Scholar] [CrossRef]
- Tan, F.; Terasawa, H.; Sugihara, O.; Kawasaki, A.; Yamashita, T.; Inoue, D.; Kagami, M.; Andraud, C. Two-Photon Absorption Light-Induced Self-Written Waveguide for Single-Mode Optical Interconnection. J. Light Technol. 2018, 36, 2478–2483. [Google Scholar] [CrossRef]
- Che, M.; Yamamoto, R.; Ito, H.; Ishibashi, T.; Kato, K. Vibration Insensitive THz Wave Interferometry for Characterizing Optical Phase Shifter. Optik 2021, 242, 167203. [Google Scholar] [CrossRef]
- Che, M.; Kondo, K.; Kanaya, H.; Kato, K. Arrayed Photomixers for THz Beam-Combining and Beam-Steering. J. Light Technol. 2022, 40, 6657–6665. [Google Scholar] [CrossRef]
- Monnai, Y.; Altmann, K.; Jansen, C.; Hillmer, H.; Koch, M.; Shinoda, H. Terahertz beam steering and variable focusing using programmable diffraction gratings. Opt. Express 2013, 21, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
- Nagatsuma, T.; Horiguchi, S.; Minamikata, Y.; Yoshimizu, Y.; Hisatake, S.; Kuwano, S.; Yoshimoto, N.; Terada, J.; Takahashi, H. Terahertz Wireless Communications Based on Photonics Technologies. Opt. Express 2013, 21, 23736–23747. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Jia, S.; Wang, S.; Pang, X.; Li, W.; Zheng, S.; Chi, H.; Jin, X.; Zhang, X.; Yu, X. 100 Gbit/s THz Photonic Wireless Transmission in the 350-GHz Band with Extended Reach. IEEE Photonics Technol. Lett. 2018, 30, 1064–1067. [Google Scholar] [CrossRef]
- Pang, X.; Caballero, A.; Dogadaev, A.; Arlunno, V.; Borkowski, R.; Pedersen, J.S.; Deng, L.; Karinou, F.; Roubeau, F.; Zibar, D.; et al. 100 Gbit/s Hybrid Optical Fiber-Wireless Link in the W-Band (75–110 GHz). Opt. Express 2011, 19, 24944. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, E.; Belem-Goncalves, C.; Luxey, C.; Gianesello, F.; Durand, C.; Gloria, D.; Ducournau, G. 300 GHz OOK Transmitter Integrated in Advanced Silicon Photonics Technology and Achieving 20 Gb/S. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, USA, 10–12 June 2018. [Google Scholar] [CrossRef]
- Hirata, A.; Togo, H.; Shimizu, N.; Takahashi, H.; Okamoto, K.; Nagatsuma, T. Low-Phase Noise Photonic Millimeter-Wave Generator Using an AWG Integrated with a 3-DB Combiner. IEICE Trans. Electron. 2005, E88-C, 1458–1464. [Google Scholar] [CrossRef]
- Jia, S.; Yu, X.; Hu, H.; Yu, J.; Guan, P.; Da Ros, F.; Galili, M.; Morioka, T.; Oxenløwe, L.K. THz Photonic Wireless Links with 16-QAM Modulation in the 375-450 GHz Band. Opt. Express 2016, 24, 23777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagatsuma, T.; Hisatake, S.; Fujita, M.; Pham, H.H.N.; Tsuruda, K.; Kuwano, S.; Terada, J. Millimeter-Wave and Terahertz-Wave Applications Enabled by Photonics. IEEE J. Quantum Electron. 2016, 52, 1–12. [Google Scholar] [CrossRef]
- Koenig, S.; Lopez-Diaz, D.; Antes, J.; Boes, F.; Henneberger, R.; Leuther, A.; Tessmann, A.; Schmogrow, R.; Hillerkuss, D.; Palmer, R.; et al. Wireless Sub-THz Communication System with High Data Rate. Nat. Photonics 2013, 7, 977–981. [Google Scholar] [CrossRef]
- Preu, S.; Dhler, G.H.; Malzer, S.; Wang, L.J.; Gossard, A.C. Tunable, Continuous-Wave Terahertz Photomixer Sources and Applications. J. Appl. Phys. 2011, 109, 4. [Google Scholar] [CrossRef] [Green Version]
- Ueda, Y.; Shindo, T.; Kanazawa, S.; Fujiwara, N.; Ishikawa, M. Electro-Optically Tunable Laser with Ultra-Low Tuning Power Dissipation and Nanosecond-Order Wavelength Switching for Coherent Networks. Optica 2020, 7, 1003. [Google Scholar] [CrossRef]
- Saito, Y.; Ueda, Y.; Shindo, T.; Kanazawa, S.; Matsuzaki, H.; Ishikawa, M. Burst-Tolerant Tuning of Reflection-Type Transversal Filter Laser with Single Active Region. IEEE Photonics Technol. Lett. 2022, 34, 23–26. [Google Scholar] [CrossRef]
- Ishibashi, T.; Furuta, T.; Fushimi, H.; Kodama, S. InP/InGaAs Uni-Traveling-Carrier Photodiodes. IEICE Trans. Electron. 2000, 83, 938–949. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiramizu, T.; Seiki, N.; Matsumoto, R.; Masutomi, N.; Mikami, Y.; Ueda, Y.; Kato, K. Feasibility Demonstration of THz Wave Generation/Modulation Based on Photomixing Using a Single Wavelength-Tunable Laser. Photonics 2023, 10, 369. https://doi.org/10.3390/photonics10040369
Shiramizu T, Seiki N, Matsumoto R, Masutomi N, Mikami Y, Ueda Y, Kato K. Feasibility Demonstration of THz Wave Generation/Modulation Based on Photomixing Using a Single Wavelength-Tunable Laser. Photonics. 2023; 10(4):369. https://doi.org/10.3390/photonics10040369
Chicago/Turabian StyleShiramizu, Takashi, Naoya Seiki, Ryo Matsumoto, Naoto Masutomi, Yuya Mikami, Yuta Ueda, and Kazutoshi Kato. 2023. "Feasibility Demonstration of THz Wave Generation/Modulation Based on Photomixing Using a Single Wavelength-Tunable Laser" Photonics 10, no. 4: 369. https://doi.org/10.3390/photonics10040369
APA StyleShiramizu, T., Seiki, N., Matsumoto, R., Masutomi, N., Mikami, Y., Ueda, Y., & Kato, K. (2023). Feasibility Demonstration of THz Wave Generation/Modulation Based on Photomixing Using a Single Wavelength-Tunable Laser. Photonics, 10(4), 369. https://doi.org/10.3390/photonics10040369