Improved Radiation Resistance of Er-Yb Co-Doped Silica Fiber by Pretreating Fibers
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Xia, H.Y.; Shangguan, M.J.; Wu, Y.B.; Wang, L.; Zhao, L.J.; Qiu, J.W.; Zhang, R.J. 1.5 μm polarization coherent lidar incorporating time-division multiplexing. Opt. Express 2017, 25, 20663–20674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zha, S.Q.; Chen, Y.J.; Li, B.X.; Lin, Y.F.; Liao, W.B.; Zou, Y.Q.; Huang, C.H.; Lin, Z.L.; Zhang, G. High-repetition-rate 1.5 μm passively Q-switched Er:Yb:YAl3(BO3)4 microchip laser. Chin. Opt. Lett. 2021, 19, 6. [Google Scholar] [CrossRef]
- Yao, G.; Zhao, Z.G.; Liu, Z.J.; Gao, X.B.; Cong, Z.H. High repetition rate actively mode-locked Er:fiber laser with tunable pulse duration. Chin. Opt. Lett. 2022, 20, 6. [Google Scholar] [CrossRef]
- Yu, A.W.; Abshire, J.B.; Storm, M.; Betin, A. Laser Amplifier Development for IPDA Lidar measurements of CO2 from Space. In Proceedings of the Conference on Solid State Lasers XXIV—Technology and Devices, San Francisco, CA, USA, 8–10 February 2015. [Google Scholar]
- Yu, W.L.; Yan, P.; Qi, T.C.; Wu, Y.L.; Li, D.; Xiao, Q.R.; Gong, M.L. High-power and high-brightness Er:Yb codoped fiber MOPA operating at 1535 nm. Opt. Express 2022, 30, 16837–16846. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Han, B.; Wang, Z.N.; Liang, H.K. Statistical properties of Er/Yb co-doped random Rayleigh feedback fiber laser. Chin. Opt. Lett. 2021, 19, 5. [Google Scholar] [CrossRef]
- Sergeyev, S.; Kolpakov, S.; Loika, Y. Vector harmonic mode-locking by acoustic resonance. Photonics Res. 2021, 9, 1432–1438. [Google Scholar] [CrossRef]
- Yang, Q.B.; Jiao, Y.; Yu, C.L.; Shao, C.Y.; Lou, F.G.; Wang, S.K.; Zhang, L.; Yang, Q.H.; Hu, L.L. Gain and laser performance of heavily Er-doped silica fiber fabricated by MCVD combined with the sol-gel method. Chin. Opt. Lett. 2021, 19, 5. [Google Scholar] [CrossRef]
- Song, D.Y.; Hurh, Y.S.; Cho, J.W.; Lim, J.H.; Lee, D.W.; Lee, J.S.; Chung, Y.C.; Chung, Y. 4 × 10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing. Opt. Express 2000, 7, 280–284. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.X.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Lin, Q.M.; Yan, L.; Song, Y.Q.; Jia, X.Z.; Feng, X.Q.; Hou, L.; Bai, J.T. Switchable single- and dual-wavelength femtosecond mode-locked Er-doped fiber laser based on carboxyl- functionalized graphene oxide saturable absorber. Chin. Opt. Lett. 2021, 19, 6. [Google Scholar] [CrossRef]
- Gupta, S.; Engin, D.; Pachowicz, D.; Fouron, J.L.; Lander, J.; Dang, X.; Litvinovitch, S.; Chuang, T.; Puffenberger, K.; Kimpel, F.; et al. Development, testing, and initial space qualification of 1.5-μm, high-power (6 W), pulse-position-modulated fiber laser transmitter for deep-space laser communication. Opt. Eng. 2016, 55, 9. [Google Scholar] [CrossRef]
- Aubry, M.; Morana, A.; Mescia, L.; Mekki, J.; Ranger, C.; Laurent, A.; Robin, T.; Marin, E.; Ouerdane, Y.; Boukenter, A.; et al. Combined Temperature and Radiation Effects on the Gain of Er- and Er–Yb-Doped Fiber Amplifiers. IEEE Trans. Nucl. Sci. 2021, 68, 793–800. [Google Scholar] [CrossRef]
- Chi, J.; Jiang, S.; Zhang, L.; Yu, M.; Wang, J. Experimental Study on Radiation Performance of Fiber Lasers. Laser Optoelectron. Prog. 2018, 55, 061406. [Google Scholar] [CrossRef]
- Jiao, Y.; Guo, M.T.; Wang, R.L.; Shao, C.Y.; Hu, L.L. Influence of Al/Er ratio on the optical properties and structures of Er3+/Al3+ co-doped silica glasses. J. Appl. Phys. 2021, 129, 9. [Google Scholar] [CrossRef]
- Girard, S.; Ouerdane, Y.; Tortech, B.; Marcandella, C.; Robin, T.; Cadier, B.; Baggio, J.; Paillet, P.; Ferlet-Cavrois, V.; Boukenter, A.; et al. Radiation Effects on Ytterbium- and Ytterbium/Erbium-Doped Double-Clad Optical Fibers. IEEE Trans. Nucl. Sci. 2009, 56, 3293–3299. [Google Scholar] [CrossRef]
- Shao, C.Y.; Ren, J.J.; Wang, F.; Ollier, N.; Xie, F.H.; Zhang, X.Y.; Zhang, L.; Yu, C.L.; Hu, L.L. Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio. J. Phys. Chem. B 2018, 122, 2809–2820. [Google Scholar] [CrossRef]
- She, S.; Mei, L.; Zhou, Z.; Hou, C.; Guo, H. Progress in Radiation-Resistant Erbium-Doped and Erbium-Ytterbium Co-doped Fibers for Space Optical Communication. J. Appl. Sci. 2020, 38, 579–594. [Google Scholar] [CrossRef]
- Girard, S.; Vivona, M.; Laurent, A.; Cadier, B.; Marcandella, C.; Robin, T.; Pinsard, E.; Boukenter, A.; Ouerdane, Y. Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application. Opt. Express 2012, 20, 8457–8465. [Google Scholar] [CrossRef] [PubMed]
- Ladaci, A.; Girard, S.; Mescia, L.; Laurent, A.; Ranger, C.; Kermen, D.; Robin, T.; Cadier, B.; Boutillier, M.; Sane, B.; et al. Radiation hardened high-power Er3+/Yb3+-codoped fiber amplifiers for free-space optics communications. Opt. Lett. 2018, 43, 3049–3052. [Google Scholar] [CrossRef] [PubMed]
- Haddad, E.; Gonthier, F.; Peng, Q.Y.; Poenariu, V.; Tagziria, K.; Lavoie, J.; Murzionak, P.; Schinn, G.; Karafolas, N.; Bringer, C. 10W single-mode PM optical amplifiers in the 1.5 μm region for space applications. In Proceedings of the International Conference on Space Optics (ICSO), Chania, Greece, 9–12 October 2018. [Google Scholar]
- Zotov, K.V.; Likhachev, M.E.; Tomashuk, A.L.; Bubnov, M.M.; Yashkov, M.V.; Guryanov, A.N. Radiation-resistant erbium-doped silica fibre. Quantum Electron. 2007, 37, 946–949. [Google Scholar] [CrossRef]
- Zotov, K.V.; Likhachev, M.E.; Tomashuk, A.L.; Bubnov, M.M.; Yashkov, M.V.; Guryanov, A.N.; Klyamkin, S.N. Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications. IEEE Trans. Nucl. Sci. 2008, 55, 2213–2215. [Google Scholar] [CrossRef]
- Girard, S.; Laurent, A.; Pinsard, E.; Robin, T.; Cadier, B.; Boutillier, M.; Marcandella, C.; Boukenter, A.; Ouerdane, Y. Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions. Opt. Lett. 2014, 39, 2541–2544. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, S.P.; Yang, K.; Chen, D.P. Radiation-induced change of OH content in Yb-doped silica glass. Chin. Opt. Lett. 2015, 13, 4. [Google Scholar] [CrossRef] [Green Version]
- Girard, S.; Laurent, A.; Pinsard, E.; Raine, M.; Robin, T.; Cadier, B.; Di Francesca, D.; Paillet, P.; Gaillardin, M.; Duhamel, O.; et al. Proton Irradiation Response of Hole-Assisted Carbon Coated Erbium-Doped Fiber Amplifiers. IEEE Trans. Nucl. Sci. 2014, 61, 3309–3314. [Google Scholar] [CrossRef]
- Faile, S.P.; Schmidt, J.J.; Roy, D.M. Irradiation Effects in Glasses: Suppression by Synthesis under High-Pressure Hydrogen. Science 1967, 156, 1593–1595. [Google Scholar] [CrossRef] [PubMed]
- Lyons, P.B.; Looney, L.D. Enhanced radiation resistance of high-OH silica optical fibers. In Proceedings of the Optical Materials Reliability and Testing: Benign and Adverse Environments, Boston, MA, USA, 8–9 September 1992; pp. 286–296. [Google Scholar]
- Ito, C.; Naito, H.; Nishimura, A.; Ohba, H.; Wakaida, I.; Sugiyama, A.; Chatani, K. Development of radiation-resistant optical fiber for application to observation and laser spectroscopy under high radiation dose. J. Nucl. Sci. Technol. 2014, 51, 944–950. [Google Scholar] [CrossRef] [Green Version]
- Vienne, G.G.; Caplen, J.E.; Dong, L.; Minelly, J.D.; Nilsson, J.; Payne, D.N. Fabrication and characterization of Yb3+: Er3+ phosphosilicate fibers for lasers. J. Light. Technol. 1998, 16, 1990–2001. [Google Scholar] [CrossRef]
- Shao, C.Y.; Jiao, Y.; Lou, F.G.; Wang, M.; Zhang, L.; Feng, S.Y.; Wang, S.K.; Chen, D.P.; Yu, C.L.; Hu, L.L. Enhanced radiation resistance of ytterbium-doped silica fiber by pretreating on a fiber preform. Opt. Mater. Express 2020, 10, 408–420. [Google Scholar] [CrossRef]
- Jiao, Y.; Yang, Q.; Zhu, Y.; Wang, F.; Zhang, L.; Wang, M.; Wang, S.; Shao, C.; Yu, C.; Hu, L. Improved radiation resistance of an Er-doped silica fiber by a preform pretreatment method. Opt. Express 2022, 30, 6236–6247. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Yang, Q.B.; Guo, M.T.; Ma, X.B.; Shao, C.Y.; Yu, C.L.; Hu, L.L. Effect of the GeO2 content on the radiation resistance of Er3+-doped silica glasses and fibers. Opt. Mater. Express 2021, 11, 1885–1897. [Google Scholar] [CrossRef]
- Likhachev, M.E.; Bubnov, M.M.; Zotov, K.V.; Tomashuk, A.L.; Lipatov, D.S.; Yashkov, M.V.; Guryanov, A.N. Radiation Resistance of Er-Doped Silica Fibers: Effect of Host Glass Composition. J. Light. Technol. 2013, 31, 749–755. [Google Scholar] [CrossRef]
- Stone, J. Reduction of OH Absorption in Optical Fibers by OH → OD Isotope Exchange. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 609–621. [Google Scholar] [CrossRef]
- Stone, J. Interactions of Hydrogen and Deuterium with Silica Optical Fibers: A Review. J. Light. Technol. 1987, 5, 712–733. [Google Scholar] [CrossRef]
- Kumar, B.; Fernelius, N.; Detrio, J.A. Deuterium Treatment and Infrared Transmission Spectra of Fused Silica. J. Am. Ceram. Soc. 1981, 64, C178–C180. [Google Scholar] [CrossRef]
- Skuja, L.; Kajihara, K.; Hirano, M.; Hosono, H. Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2. Phys. Rev. B 2011, 84, 9. [Google Scholar] [CrossRef]
- Xing, Y.B.; Liu, Y.Z.; Zhao, N.; Cao, R.T.; Wang, Y.B.; Yang, Y.; Peng, J.G.; Li, H.Q.; Yang, L.Y.; Dai, N.L.; et al. Radical passive bleaching of Tm-doped silica fiber with deuterium. Opt. Lett. 2018, 43, 1075–1078. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Core diameter | 12 μm |
Clad diameter | 125 μm |
Coating diameter | 215 μm |
Core NA | 0.19 |
Cladding NA | 0.46 |
Clad absorption @ 915 nm | 1.9 dB/m |
Core absorption @ 1536 nm | 40 dB/m |
Sample | D2-Loading | Pre-Irradiation | Vacuum Treatment |
---|---|---|---|
Pristine | × | × | × |
R0 | √ | × | √ |
R50 | √ | 50 krad | √ |
R160 | √ | 160 krad | √ |
R240 | √ | 240 krad | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Shao, C.; Wang, F.; Wang, M.; Zhang, L.; Dai, Y.; Yu, C.; Hu, L. Improved Radiation Resistance of Er-Yb Co-Doped Silica Fiber by Pretreating Fibers. Photonics 2023, 10, 414. https://doi.org/10.3390/photonics10040414
Zhu Y, Shao C, Wang F, Wang M, Zhang L, Dai Y, Yu C, Hu L. Improved Radiation Resistance of Er-Yb Co-Doped Silica Fiber by Pretreating Fibers. Photonics. 2023; 10(4):414. https://doi.org/10.3390/photonics10040414
Chicago/Turabian StyleZhu, Yiming, Chongyun Shao, Fan Wang, Meng Wang, Lei Zhang, Ye Dai, Chunlei Yu, and Lili Hu. 2023. "Improved Radiation Resistance of Er-Yb Co-Doped Silica Fiber by Pretreating Fibers" Photonics 10, no. 4: 414. https://doi.org/10.3390/photonics10040414
APA StyleZhu, Y., Shao, C., Wang, F., Wang, M., Zhang, L., Dai, Y., Yu, C., & Hu, L. (2023). Improved Radiation Resistance of Er-Yb Co-Doped Silica Fiber by Pretreating Fibers. Photonics, 10(4), 414. https://doi.org/10.3390/photonics10040414