Preparation of Antireflection Microstructures on ZnSe Crystal by Femtosecond Burst Bessel Direct Laser Writing
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, D.C. Durable 3–5 μm transmitting infrared window materials. Infrared Phys. Technol. 1998, 39, 185–201. [Google Scholar] [CrossRef]
- Bushunov, A.A.; Tarabrin, M.K.; Lazarev, V.A. Review of Surface Modification Technologies for Mid‐Infrared Antireflection Microstructures Fabrication. Laser Photonics Rev. 2021, 15, 2000202. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, J.; Liu, T.; Zhong, Z.; Luo, Z.; Xiao, W.; Lv, B.; Zhou, X.; Liu, X. Tunable properties of ZnSe/graphene heterostructure as a promising candidate for photo/electro-catalyst applications. Appl. Surf. Sci. 2022, 574, 151679. [Google Scholar] [CrossRef]
- Gao, M.; Yang, H.; Shen, H.; Zeng, Z.; Fan, F.; Tang, B.; Min, J.; Zhang, Y.; Hua, Q.; Li, L.S.; et al. Bulk-like ZnSe Quantum Dots Enabling Efficient Ultranarrow Blue Light-Emitting Diodes. Nano Lett. 2021, 21, 7252–7260. [Google Scholar] [CrossRef]
- Wisniewski, D.; Byrne, K.; de Souza, C.F.; Fernandes, C.; Ruda, H.E. Enhancement of transport properties in single ZnSe nanowire field-effect transistors. Nanotechnology 2019, 30, 054007. [Google Scholar] [CrossRef] [PubMed]
- Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Podmar’kov, Y.P.; Skasyrsky, Y.K. High-energy thermoelectrically cooled Fe:ZnSe laser tunable over 3.75–4.82 mum. Opt. Lett. 2018, 43, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Pushkin, A.V.; Migal, E.A.; Tokita, S.; Korostelin, Y.V.; Potemkin, F.V. Femtosecond graphene mode-locked Fe:ZnSe laser at 4.4 microm. Opt. Lett. 2020, 45, 738–741. [Google Scholar] [CrossRef] [PubMed]
- Pushkin, A.V.; Migal, E.A.; Uehara, H.; Goya, K.; Tokita, S.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Skasyrsky, Y.K.; Potemkin, F.V. Compact, highly efficient, 2.1-W continuous-wave mid-infrared Fe:ZnSe coherent source, pumped by an Er:ZBLAN fiber laser. Opt. Lett. 2018, 43, 5941–5944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yang, Q.; Bian, H.; Liu, F.; Li, M.; Hou, X.; Chen, F. Fabrication of ZnSe Microlens Array for a Wide Infrared Spectral Region. IEEE Photonics Technol. Lett. 2020, 32, 1327–1330. [Google Scholar] [CrossRef]
- Devendra, K.C.; Shah, D.K.; Shrivastava, A. Computational study on the performance of zinc selenide as window layer for efficient GaAs solar cell. Mater. Today Proc. 2022, 49, 2580–2583. [Google Scholar] [CrossRef]
- Pan, Y.; Hang, L.; Wu, Z.; Yin, Y. Design and fabrication of ultra broadband infrared antireflection hard coatings on ZnSe in the range from 2 to 16μm. Infrared Phys. Technol. 2009, 52, 193–195. [Google Scholar] [CrossRef]
- Phillips, R.R.; Haynes, V.; Naylor, D.A.; Ade, P. Simple method for antireflection coating ZnSe in the 20 μm wavelength range. Appl. Opt. 2008, 47, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Lotz, M.R.; Petersen, C.R.; Markos, C.; Bang, O.; Jakobsen, M.H.; Taboryski, R. Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared. Optica 2018, 5, 557–563. [Google Scholar] [CrossRef]
- Chenard, F.; Alvarez, O.; Buff, A. Mid-infrared chalcogenide fiber devices for medical applications. In Proceedings of the Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVIII, San Francisco, CA, USA, 27 January–1 February 2018; pp. 104–112. [Google Scholar]
- Sanghera, J.; Florea, C.; Busse, L.; Shaw, B.; Miklos, F.; Aggarwal, I. Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces. Opt. Express 2010, 18, 26760–26768. [Google Scholar] [CrossRef]
- Sun, H.; Liu, J.; Zhou, C.; Yang, W.; Liu, H.; Zhang, X.; Li, Z.; Zhang, B.; Jie, W.; Xu, Y. Enhanced Transmission from Visible to Terahertz in ZnTe Crystals with Scalable Subwavelength Structures. ACS Appl. Mater. Interfaces 2021, 13, 16997–17005. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Wang, S.W.; Zhang, B.; Shi, L.; Liu, X.; Zi, J.; Lu, W. High transparent mid-infrared silicon “window” decorated with amorphous photonic structures fabricated by facile phase separation. Opt. Express 2018, 26, 18734–18748. [Google Scholar] [CrossRef]
- Ye, X.; Shao, T.; Sun, L.; Wu, J.; Wang, F.; He, J.; Jiang, X.; Wu, W.D.; Zheng, W. Plasma-Induced, Self-Masking, One-Step Approach to an Ultrabroadband Antireflective and Superhydrophilic Subwavelength Nanostructured Fused Silica Surface. ACS Appl. Mater. Interfaces 2018, 10, 13851–13859. [Google Scholar] [CrossRef] [PubMed]
- Lora Gonzalez, F.; Chan, L.; Berry, A.; Morse, D.E.; Gordon, M.J. Simple colloidal lithography method to fabricate large-area moth-eye antireflective structures on Si, Ge, and GaAs for IR applications. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2014, 32, 051213. [Google Scholar] [CrossRef]
- Malekmohammad, F.; Malekmohammad, M. Fabrication of a broadband anti-reflection layer using metal-assisted chemical etching. Appl. Opt. 2019, 58, 9039–9043. [Google Scholar] [CrossRef]
- Lu, Y.T.; Barron, A.R. Nanopore-type black silicon anti-reflection layers fabricated by a one-step silver-assisted chemical etching. Phys. Chem. Chem. Phys. 2013, 15, 9862–9870. [Google Scholar] [CrossRef]
- Granados, E.; Martinez-Calderon, M.; Gomez, M.; Rodriguez, A.; Olaizola, S.M. Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS). Opt. Express 2017, 25, 15330–15335. [Google Scholar] [CrossRef]
- Ionin, A.A.; Klimachev, Y.M.; Kozlov, A.Y.; Kudryashov, S.I.; Ligachev, A.E.; Makarov, S.V.; Seleznev, L.V.; Sinitsyn, D.V.; Rudenko, A.A.; Khmelnitsky, R.A. Direct femtosecond laser fabrication of antireflective layer on GaAs surface. Appl. Phys. B 2013, 111, 419–423. [Google Scholar] [CrossRef]
- Vorobyev, A.; Guo, C. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Opt. Express 2011, 19, A1031–A1036. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J.; Li, Q.K.; Yu, Y.H.; Yu, Y.S. Antireflection Microstructured Surface on ZnSe for Mid-infrared Spectral Region. J. Laser Micro/Nanoeng. 2019, 14, 120–123. [Google Scholar] [CrossRef]
- Tarabrin, M.K.; Bushunov, A.A.; Lazarev, V.A.; Karasik, V.E.; Kozlovskiy, V.I.; Sviridov, D.E.; Korostelin, Y.V.; Frolov, M.P.; Skasyrsky, Y.K. Fabrication of anti-reflection microstructures on ZnSe single crystal by using femtosecond laser pulses. In Proceedings of the Laser Science, Washington, DC, USA, 18–21 September 2017; p. JTu2A.20. [Google Scholar]
- Wang, L.; Xu, B.-B.; Chen, Q.-D.; Ma, Z.-C.; Zhang, R.; Liu, Q.-X.; Sun, H.-B. Maskless laser tailoring of conical pillar arrays for antireflective biomimetic surfaces. Opt. Lett. 2011, 36, 3305–3307. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, H.; Wang, C.; Zhao, Y.; Duan, J.A. Direct femtosecond laser writing of inverted array for broadband antireflection in the far-infrared. Opt. Lasers Eng. 2020, 129, 106062. [Google Scholar] [CrossRef]
- Zhang, F.; Duan, J.; Zhou, X.; Wang, C. Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam. Opt. Express 2018, 26, 34016–34030. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, F.; Duan, J. Subwavelength Quasi-Periodic Array for Infrared Antireflection. Nanomaterials 2022, 12, 3520. [Google Scholar] [CrossRef] [PubMed]
- Szliszka, E.; Czuba, Z.P.; Domino, M.; Mazur, B.; Zydowicz, G.; Krol, W. Ethanolic extract of propolis (EEP) enhances the apoptosis- inducing potential of TRAIL in cancer cells. Molecules 2009, 14, 738–754. [Google Scholar] [CrossRef]
- Matsumura, T.; Young, K.; Wen, Q.; Hanany, S.; Ishino, H.; Inoue, Y.; Hazumi, M.; Koch, J.; Suttman, O.; Schutz, V. Millimeter-wave broadband antireflection coatings using laser ablation of subwavelength structures. Appl. Opt. 2016, 55, 3502–3509. [Google Scholar] [CrossRef] [PubMed]
- Bushunov, A.A.; Tarabrin, M.K.; Lazarev, V.A.; Karasik, V.E.; Korostelin, Y.V.; Frolov, M.P.; Skasyrsky, Y.K.; Kozlovsky, V.I. Fabrication of anti-reflective microstructures on chalcogenide crystals by femtosecond laser ablation. Opt. Mater. Express 2019, 9, 1689–1697. [Google Scholar] [CrossRef]
- Hodgson, N.; Allegre, H.; Starodoumov, A.; Bettencourt, S. Femtosecond Laser Ablation in Burst Mode as a Function of Pulse Fluence and Intra-Burst Repetition Rate. J. Laser Micro Nanoeng. 2020, 15, 236–244. [Google Scholar] [CrossRef]
- Deinega, A.; Valuev, I.; Potapkin, B.; Lozovik, Y. Minimizing light reflection from dielectric textured surfaces. JOSA A 2011, 28, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Boden, S.A.; Bagnall, D.M. Tunable reflection minima of nanostructured antireflective surfaces. Appl. Phys. Lett. 2008, 93, 133108. [Google Scholar] [CrossRef]
y0 (μm) | A (μm) | w (μm) | xc (μm) | |
---|---|---|---|---|
Burst 1 | 0.0348 | −0.93588 | 0.89048 | 1.43323 |
Burst 3 | 0.05236 | −1.7127 | 1.17805 | 1.47026 |
Burst 5 | 0.05726 | −1.37681 | 0.67921 | 1.46701 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Yang, J.; Wang, S.; Wang, S.; Deng, G.; Zhou, S. Preparation of Antireflection Microstructures on ZnSe Crystal by Femtosecond Burst Bessel Direct Laser Writing. Photonics 2023, 10, 479. https://doi.org/10.3390/photonics10040479
Zhou S, Yang J, Wang S, Wang S, Deng G, Zhou S. Preparation of Antireflection Microstructures on ZnSe Crystal by Femtosecond Burst Bessel Direct Laser Writing. Photonics. 2023; 10(4):479. https://doi.org/10.3390/photonics10040479
Chicago/Turabian StyleZhou, Sikun, Junjie Yang, Sha Wang, Shutong Wang, Guoliang Deng, and Shouhuan Zhou. 2023. "Preparation of Antireflection Microstructures on ZnSe Crystal by Femtosecond Burst Bessel Direct Laser Writing" Photonics 10, no. 4: 479. https://doi.org/10.3390/photonics10040479
APA StyleZhou, S., Yang, J., Wang, S., Wang, S., Deng, G., & Zhou, S. (2023). Preparation of Antireflection Microstructures on ZnSe Crystal by Femtosecond Burst Bessel Direct Laser Writing. Photonics, 10(4), 479. https://doi.org/10.3390/photonics10040479