Single Photon Approach for Chirality Sensing
Abstract
:1. Introduction
2. Materials and Methods
Experimental Setup
3. Results and Discussion
3.1. Characterisation of Twin Photon Pairs Mixture
3.2. Calibration of Polarisation Sensor
3.3. Minimum Detection Limit
3.4. Allan Deviation Analysis and Minimum Detection Limit
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barron, L.D. From Cosmic Chirality to Protein Structure: Lord Kelvin’s Legacy. Chirality 2012, 24, 879–893. [Google Scholar] [CrossRef]
- Wu, C.S.; Ambler, E.; Hayward, R.W.; Hoppes, D.D.; Hudson, R.P. Experimental Test of Parity Conservation in Beta Decay. Phys. Rev. 1957, 105, 1413–1415. [Google Scholar] [CrossRef]
- Quack, M.; Seyfang, G.; Wichmann, G. Perspectives on parity violation in chiral molecules: Theory, spectroscopic experiment and biomolecular homochirality. Chem. Sci. 2022, 13, 10598–10643. [Google Scholar] [CrossRef]
- Quack, M. How Important is Parity Violation for Molecular and Biomolecular Chirality? Angew. Chem. Int. Ed. 2002, 41, 4618–4630. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.I. Homochirality. In Encyclopedia of Astrobiology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Glavin, D.P.; Burton, A.S.; Elsila, J.E.; Aponte, J.C.; Dworkin, J.P. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem. Rev. 2019, 120, 4660–4689. [Google Scholar] [CrossRef]
- Avnir, D. Critical review of chirality indicators of extraterrestrial life. New Astron. Rev. 2021, 92, 101596. [Google Scholar] [CrossRef]
- Nunez, M.; Garcia-Rubino, M.; Conejo-Garcia, A.; Cruz-Lopez, O.; Kimatrai, M.; Gallo, M.; Espinosa, A.; Campos, J. Homochiral Drugs: A Demanding Tendency of the Pharmaceutical Industry. Curr. Med. Chem. 2009, 16, 2064–2074. [Google Scholar] [CrossRef] [PubMed]
- Ceramella, J.; Iacopetta, D.; Franchini, A.; Luca, M.D.; Saturnino, C.; Andreu, I.; Sinicropi, M.S.; Catalano, A. A Look at the Importance of Chirality in Drug Activity: Some Significative Examples. Appl. Sci. 2022, 12, 10909. [Google Scholar] [CrossRef]
- Drayer, D.E. Pharmacodynamic and pharmacokinetic differences between drug enantiomers in humans: An overview. Clin. Pharmacol. Ther. 1986, 40, 125–133. [Google Scholar] [CrossRef]
- Patočka, J.; Dvořák, A. Biomedical aspects of chiral molecules. J. Appl. Biomed. 2004, 2, 95–100. [Google Scholar] [CrossRef]
- Calcaterra, A.; D’Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal. 2018, 147, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Daniels, J.M.; Nestmann, E.R.; Kerr, A. Development of Stereoisomers (Chiral) Drugs: A Brief Review Of Scientific and Regulatory Considerations. Drug Inf. J. 1997, 31, 639–646. [Google Scholar] [CrossRef]
- Kimura, T.; Hamase, K.; Miyoshi, Y.; Yamamoto, R.; Yasuda, K.; Mita, M.; Rakugi, H.; Hayashi, T.; Isaka, Y. Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease. Sci. Rep. 2016, 6, 26137. [Google Scholar] [CrossRef]
- Batalla, P.; Martín, A.; López, M.Á.; González, M.C.; Escarpa, A. Enzyme-Based Microfluidic Chip Coupled to Graphene Electrodes for the Detection of D-Amino Acid Enantiomer-Biomarkers. Anal. Chem. 2015, 87, 5074–5078. [Google Scholar] [CrossRef] [PubMed]
- MacKay, M.A.B.; Kravtsenyuk, M.; Thomas, R.; Mitchell, N.D.; Dursun, S.M.; Baker, G.B. D-Serine: Potential Therapeutic Agent and/or Biomarker in Schizophrenia and Depression? Front. Psychiatry 2019, 10, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Yang, J.T. A new approach to the calculation of secondary structures of globular proteins by optical rotatory dispersion and circular dichroism. Biochem. Biophys. Res. Commun. 1971, 44, 1285–1291. [Google Scholar] [CrossRef]
- Gogoi, A.; Konwer, S.; Zhuo, G.Y. Polarimetric Measurements of Surface Chirality Based on Linear and Nonlinear Light Scattering. Front. Chem. 2021, 8, 21–25. [Google Scholar] [CrossRef]
- Nakanishi, K.; Berova, N.; Woody, R.W. Circular Dichroism: Principles and Applications. VCH Publishers, Inc., New York, NY. 1994. xvii + 576 pp. 15.5 × 23.5 cm. $125.00. ISBN 1-56081-618-X. J. Nat. Prod. 1996, 59, 1219. [Google Scholar] [CrossRef]
- Eyring, H.; Liu, H.C.; Caldwell, D. Optical rotatory dispersion and circular dichroism. Chem. Rev. 1968, 68, 525–540. [Google Scholar] [CrossRef]
- Chou, C.; Tsai, H.M.; Liao, K.Y.; Chou, L.D.; Huang, P.H. Optical activity measurement by use of a balanced detector optical heterodyne interferometer. Appl. Opt. 2006, 45, 3733. [Google Scholar] [CrossRef]
- Vollmer, F.; Fischer, P. Ring-resonator-based frequency-domain optical activity measurements of a chiral liquid. Opt. Lett. 2006, 31, 453. [Google Scholar] [CrossRef] [PubMed]
- Neuman, K.C.; Chadd, E.H.; Liou, G.F.; Bergman, K.; Block, S.M. Characterization of Photodamage to Escherichia coli in Optical Traps. Biophys. J. 1999, 77, 2856–2863. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.A.; Bowen, W.P. Quantum metrology and its application in biology. Phys. Rep. 2016, 615, 1–59. [Google Scholar] [CrossRef]
- Roccia, E.; Cimini, V.; Sbroscia, M.; Gianani, I.; Ruggiero, L.; Mancino, L.; Genoni, M.G.; Ricci, M.A.; Barbieri, M. Multiparameter approach to quantum phase estimation with limited visibility. Optica 2018, 5, 1171. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222–229. [Google Scholar] [CrossRef]
- Russo, S.D.; Elefante, A.; Dequal, D.; Pallotti, D.K.; Amato, L.S.; Sgobba, F.; de Cumis, M.S. Advances in Mid-Infrared Single-Photon Detection. Photonics 2022, 9, 470. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit. Science 2004, 306, 1330–1336. [Google Scholar] [CrossRef]
- Wolfgramm, F.; Vitelli, C.; Beduini, F.A.; Godbout, N.; Mitchell, M.W. Entanglement-enhanced probing of a delicate material system. Nat. Photonics 2012, 7, 28–32. [Google Scholar] [CrossRef]
- Elefante, A.; Russo, S.D.; Sgobba, F.; Amato, L.S.; Pallotti, D.K.; Dequal, D.; de Cumis, M.S. Recent Progress in Short and Mid-Infrared Single-Photon Generation: A Review. Optics 2023, 4, 13–38. [Google Scholar] [CrossRef]
- Adesso, G.; Dell’Anno, F.; Siena, S.D.; Illuminati, F.; Souza, L.A.M. Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states. Phys. Rev. A 2009, 79, 040305. [Google Scholar] [CrossRef]
- Tischler, N.; Krenn, M.; Fickler, R.; Vidal, X.; Zeilinger, A.; Molina-Terriza, G. Quantum optical rotatory dispersion. Sci. Adv. 2016, 2. [Google Scholar] [CrossRef]
- Yoon, S.J.; Lee, J.S.; Rockstuhl, C.; Lee, C.; Lee, K.G. Experimental quantum polarimetry using heralded single photons. Metrologia 2020, 57, 045008. [Google Scholar] [CrossRef]
- Harnchaiwat, N.; Zhu, F.; Westerberg, N.; Gauger, E.; Leach, J. Tracking the polarisation state of light via Hong-Ou-Mandel interferometry. Opt. Express 2020, 28, 2210. [Google Scholar] [CrossRef] [PubMed]
- Sgobba, F.; Pallotti, D.K.; Elefante, A.; Russo, S.D.; Dequal, D.; de Cumis, M.S.; Amato, L.S. Optimal Measurement of Telecom Wavelength Single Photon Polarisation via Hong-Ou-Mandel Interferometry. Photonics 2023, 10, 72. [Google Scholar] [CrossRef]
- Giglio, M.; Patimisco, P.; Sampaolo, A.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Allan deviation plot as a tool for quartz-enhanced photoacoustic sensors noise analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 63, 555–560. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sgobba, F.; Elefante, A.; Dello Russo, S.; Siciliani de Cumis, M.; Santamaria Amato, L. Single Photon Approach for Chirality Sensing. Photonics 2023, 10, 512. https://doi.org/10.3390/photonics10050512
Sgobba F, Elefante A, Dello Russo S, Siciliani de Cumis M, Santamaria Amato L. Single Photon Approach for Chirality Sensing. Photonics. 2023; 10(5):512. https://doi.org/10.3390/photonics10050512
Chicago/Turabian StyleSgobba, Fabrizio, Arianna Elefante, Stefano Dello Russo, Mario Siciliani de Cumis, and Luigi Santamaria Amato. 2023. "Single Photon Approach for Chirality Sensing" Photonics 10, no. 5: 512. https://doi.org/10.3390/photonics10050512
APA StyleSgobba, F., Elefante, A., Dello Russo, S., Siciliani de Cumis, M., & Santamaria Amato, L. (2023). Single Photon Approach for Chirality Sensing. Photonics, 10(5), 512. https://doi.org/10.3390/photonics10050512