Non-Paraxial Effects in the Laser Beams Sharply Focused to Skin Revealed by Unidirectional Helmholtz Equation Approximation
Abstract
:1. Introduction
2. The Propagation Problem Mathematical Model
2.1. Skin Model
2.2. An Optical Beam Propagation Model
2.3. Shape of Laser Beam
- (i).
- Laser beam with the Gaussian shape of intensity profile and parabolic wave front:
- (ii).
- Laser beam with the Gaussian shape of intensity profile and the wave front produced by axicon lens:
- (iii).
- Laser beam with the Bessel shape of intensity profile and the parabolic wave front:
- (iv). Laser beam with the Bessel shape of intensity profile the wave front produced by axicon lens:
3. Results
3.1. Ultra-Sharp Focusing of Laser Beams in Homogeneous Layer
3.2. A simulation of Laser Beams Sharply Focused on the Skin
4. Discussion
- (1)
- The optical energy flux of the laser beam with an initially parabolic wave front has a nonsymmetrical longitudinal direction bullet-like shape near the focus area;
- (2)
- The hotspot size predicted via the UHE approximation is larger owing to the more accurate catching influence of small-scale medium inhomogeneities compared to the paraxial approximation;
- (3)
- For a laser beam with a wave front produced by an axicon, light side lobs have non-symmetrical spatial distribution when the numerical simulation is conducted using the UHE approximation.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuchin, V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd ed.; SPIE Press: Bellingham, WA, USA, 2015; 988p. [Google Scholar]
- Kistenev, Y.V.; Borisov, A.V.; Vrazhnov, D.A. Medical Applications of Laser Molecular Imaging and Machine Learning; SPIE Press: Bellingham, WA, USA, 2021; Volume PM333, 252p. [Google Scholar]
- Zhan, Q. Focusing Through High–Numerical Aperture Objective. Chapter 7. In Three-Dimensional Microfabrication Using Two-photon Polymerization. Micro and Nano Technologies; Baldacchini, T., Ed.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 168–189. [Google Scholar]
- Votintsev, A.P.; Borisov, A.V.; Makashev, D.R.; Stoyanova, M.Y.; Kistenev, Y.V. Quartz-Enhanced Photoacoustic Spectroscopy in the Terahertz Spectral Range. Photonics 2023, 10, 835. [Google Scholar] [CrossRef]
- Vaicaitis, V.; Paulikas, S. Formation of Bessel beams with continuously variable cone angle. Opt. Quantum Electron. 2003, 35, 1065–1071. [Google Scholar] [CrossRef]
- Sedukhin, G. Efficient generation of annular cylindrical vector beams by refractive axicons with high-transmission thin-film retarders. Opt. Commun. 2021, 499, 127293. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Khorin, P.A.; Butt, M.A. Modern Types of Axicons: New Functions and Applications. Sensors 2021, 21, 6690. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Kazanskiy, N.L.; Karpeev, S.V.; Butt, M.A. Bessel Beam: Significance and Applications—A Progressive Review. Micromachines 2020, 11, 997. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Chavez-Cerda, S. Generalized parabolic non-diffracting beams of two orders. JOSA A 2018, 35, 1511–1517. [Google Scholar] [CrossRef]
- Durnin, J. Exact solutions for nondiracting beams. I. The scalar theory. J. Opt. Soc. Am. A 1987, 4, 651–654. [Google Scholar] [CrossRef]
- Durnin, J.; Miceli, J.J., Jr.; Eberly, J.H. Diffraction-free beams. Phys. Rev. Lett. 1987, 58, 1499. [Google Scholar] [CrossRef]
- Alferov, S.V.; Khonina, S.N.; Karpeev, S.V. Study of polarization properties of fiber-optics probes with use of a binary phase plate. J. Opt. Soc. Am. A 2014, 31, 802–807. [Google Scholar] [CrossRef]
- Yi, L.; Sun, L.; Ming, X. Simulation of penetration depth of Bessel beams for multifocal optical coherence tomography. Appl. Opt. 2018, 57, 4809–4814. [Google Scholar] [CrossRef] [PubMed]
- Osbild, M.; Gerhorst, E.-A.; Sivankutty, S.; Pallier, G.; Labroille, G. Submicrometer surface structuring with a Bessel beam generated by a reflective axicon. J. Laser Appl. 2021, 33, 042013. [Google Scholar] [CrossRef]
- Arita, Y.; Lee, J.; Kawaguchi, H.; Matsuo, R.; Miyamoto, K.; Dholakia, K.; Omatsu, T. Photopolymerization with high-order Bessel light beams. Opt. Lett. 2020, 45, 4080–4083. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, M.K.; Courvoisier, F.; Lacourt, P.A.; Jacquot, M.; Salut, R.; Furfaro, L.; Dudley, J.M. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl. Phys. Lett. 2010, 97, 081102. [Google Scholar] [CrossRef]
- Duocastella, M.; Arnold, C.B. Bessel and annular beams for materials processing. Laser Photonics Rev. 2012, 6, 607–621. [Google Scholar] [CrossRef]
- Skidanov, R.; Khonina, S.N.; Porfirev, A.; Pavelyev, V.; Kachalov, D. Three-dimensional laser trapping on the base of binary radial diffractive optical element. J. Mod. Opt. 2015, 62, 1183–1186. [Google Scholar] [CrossRef]
- Andrade, U.M.S.; Garcia, A.M.; Rocha, M.S. Bessel beam optical tweezers for manipulating superparamagnetic beads. Appl. Opt. 2021, 60, 3422–3429. [Google Scholar] [CrossRef]
- Smolyanskaya, O.A.; Chernomyrdin, N.V.; Konovko, A.A.; Zaitsev, K.I.; Ozheredov, I.A.; Cherkasova, O.P.; Nazarov, M.M.; Guillet, J.-P.; Kozlov, S.A.; Kistenev, Y.V.; et al. Terahertz biophotonics as a tool for studies of dielectric andspectral properties of biological tissues and liquids. Prog. Quantum Electron. 2018, 62, 1–77. [Google Scholar] [CrossRef]
- Schwarz, S.; Roth, G.-L.; Rung, S.; Esen, C.; Hellmann, R. Fabrication and evaluation of negative axicons for ultrashort pulsed laser applications. Opt. Express 2020, 28, 26207–26217. [Google Scholar] [CrossRef]
- Takanezawa, S.; Saitou, T.; Imamura, T. Wide field light-sheet microscopy with lens-axicon controlled two-photon Bessel beam illumination. Nat. Commun. 2021, 12, 2979. [Google Scholar] [CrossRef]
- Ali, Z.; Zakian, C.; Ntziachristos, V. Ultra-broadband axicon transducer for optoacoustic endoscopy. Sci. Rep. 2021, 11, 1654. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Stafeev, S.S. Sharp focusing of light of radial polarization using microlenses. Comput. Opt. 2019, 32, 155–167. [Google Scholar]
- Kotlyar, V.V.; Stafeev, S.S. Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon. J. Opt. Soc. Am. B 2010, 27, 1991. [Google Scholar] [CrossRef]
- Khonina, S.N.; Volotovskiy, S.G. Fractal cylindrical fracxicon. Opt. Mem. Neural Netw. 2018, 27, 1–9. [Google Scholar] [CrossRef]
- Vellekoop, M.; Lagendijk, A.; Mosk, A.P. Exploiting disorder for perfect focusing. Nat. Photonics 2010, 4, 320–322. [Google Scholar] [CrossRef] [Green Version]
- Dubin, S.B. Determination of lamellar body size, number density, and concentration by differential light scattering from amniotic fluid: Physical significance of A650. Clin. Chem. 1988, 34, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Salomatina, E.; Jiang, B.; Novak, J.; Yaroslavsky, A.N. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J. Biomed. Opt. 2006, 11, 064026. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, A.; Hamre, B.; Frette, O.; Stamnes, K.; Stamnes, J.J. Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices. Opt. Express 2011, 19, 14549–14567. [Google Scholar] [CrossRef]
- Jacques, S.L. Optical assessment of tissue heterogeneity in biomaterial and implants. Proc. SPIE 2000, 3914, 576–580. [Google Scholar]
- Drezek, R.; Dunn, A.; Richards-Kortum, R. Light scattering from cells: Finite-difference, time-domain simulations and goniometric measurements. Appl. Opt. 1999, 38, 3651–3661. [Google Scholar] [CrossRef]
- Saidi, S.; Jacques, S.L.; Tittel, F.K. Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Appl. Opt. 1995, 34, 7410–7418. [Google Scholar] [CrossRef]
- Bezuglyi, M.; Bezuglaya, N.; Kostuk, S. Influence of laser beam profile on light scattering by human skin during photometry by ellipsoidal reflectors. Devices Methods Meas. 2018, 9, 56–65. [Google Scholar] [CrossRef]
- Ryabukho, V.P.; Khomutov, V.L.; Tuchin, V.V.; Lyakin, D.V.; Konstantinov, K.V. Laser interferometer with an object sharply focused beam as a tool for optical tomography. Proc. SPIE Coherence Domain Opt. Methods Biomed. Sci. Clin. Appl. II 1998, 3251, 247. [Google Scholar]
- Zimnyakov, D.A.; Tuchin, V.V.; Utz, S.R.; Mishin, A.A. Human skin image analysis using coherent focused beam scattering. Proc. SPIE 1995, 2329, 115. [Google Scholar]
- Matveyev, A.L.; Matveev, L.A.; Moiseev, A.A.; Sovetsky, A.A.; Gelikonov, G.V.; Zaitsev, V.Y. Semi-analytical full-wave model for simulations of scans in optical coherence tomography with accounting for beam focusing and the motion of scatterers. Laser Phys. Lett. 2019, 16, 085601. [Google Scholar] [CrossRef]
- Kalkman, J. Fourier-domain optical coherence tomography signal analysis and numerical modeling. Int. J. Opt. 2017, 2017, 9586067. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.; Israelsen, N.M.; Maria, M.; Feuchter, T.; Podoleanu, A.; Bang, O. All-depth dispersion cancellation in spectral domain optical coherence tomography using numerical intensity correlations. Sci. Rep. 2018, 8, 9170. [Google Scholar] [CrossRef]
- Shipilo, D.E.; Nikolaeva, I.A.; Fedorov, V.Y.; Tzortzakis, S.; Couairon, A.; Panov, N.A.; Kosareva, O.G. Tight focusing of electromagnetic fields by large-aperture mirrors. Phy. Rev. 2019, 100, 033316. [Google Scholar] [CrossRef]
- Meglinski, I.V.; Churmakov, D.Y.; Bashkatov, A.N.; Genina, E.A.; Tuchin, V.V. The Enhancement of Confocal Images of Tissues at Bulk Optical Immersion. Laser Phys. 2003, 13, 65–69. [Google Scholar]
- Doronin, A.; Meglinski, I. Peer-to-Peer Monte Carlo simulation of photon migration in topical applications of biomedical optics. J. Biomed. Opt. 2012, 17, 090504. [Google Scholar] [CrossRef] [PubMed]
- Meglinski, I.V.; Kuzmin, V.L.; Churmakov, D.Y.; Greenhalgh, D.A. Monte Carlo Simulation of Coherent Effects in Multiple Scattering. Proc. Roy. Soc. A 2005, 461, 43–53. [Google Scholar] [CrossRef]
- Meglinski, I.V.; Tuchin, V.V. The enhancement of confocal probing with optical clearing. In Advances in Biomedical Photonics and Imaging; Luo, Q., Wang, L.V., Tuchin, V.V., Eds.; World Scientific Publishing Company: Singapore, 2008; pp. 33–38. [Google Scholar]
- Hokr, B.H.; Bixler, J.N.; Elpers, G.; Zollars, B.; Thomas, R.J.; Yakovlev, V.V.; Scully, M.O. Modelling focusing Gaussian beams in a turbid medium with Monte Carlo simulations. Opt. Express 2015, 23, 8699–8705. [Google Scholar] [CrossRef] [PubMed]
- Churmakov, D.; Kuzmin, V.L.; Meglinski, I. Application of the vector Monte Carlo method in Polarization Optical Coherence Tomography. Quantum Electron. 2006, 36, 1009–1015. [Google Scholar] [CrossRef]
- Meglinski, I.; Kirillin, M.; Kuzmin, V.L.; Myllyla, R. Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method. Opt. Lett. 2008, 33, 1581–1583. [Google Scholar] [CrossRef] [PubMed]
- Kirillin, M.; Meglinski, I.; Sergeeva, E.; Kuzmin, V.L.; Myllyla, R. Simulation of optical coherence tomography images by Monte Carlo modelling based on polarization vector approach. Opt. Express 2010, 18, 21714–21724. [Google Scholar] [CrossRef]
- Kandidov, V.P.; Militsin, V.O.; Bykov, A.V.; Priezzhev, A.V. Application of corpuscular and wave Monte-Carlo methods in optics of dispersive media. Quantum Electron. 2006, 36, 1003–1008. [Google Scholar] [CrossRef]
- Ortega-Quijano, N.; Romanov, O.G.; Fanjul-Vélez, F.; Salas-García, I.; Tolstik, A.L.; Arce-Diego, J.L. Numerical modeling of light propagation in biological tissues: Time-resolved 3D simulations based on light diffusion model and FDTD solution of Maxwell’s equations. Proc. SPIE 2011, 8088, 80881R. [Google Scholar]
- Silva, A.; Correia, A. From optical coherence tomography to Maxwell’s equations. In Proceedings of the IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG), Braga, Portugal, 20–23 February 2013. [Google Scholar]
- Munro, P.R.T. Three-dimensional full wave model of image formation in optical coherence tomography. Opt. Express 2016, 24, 27016–27031. [Google Scholar] [CrossRef] [Green Version]
- Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Zapata-Rodríguez, C.J. Debye representation of dispersive focused waves. J. Opt. Soc. Am. A 2007, 24, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Debye, P. Das Verhalten von Lichtwellen in der Nähe eines Brennpunktes oder einer Brennlinie. Ann. Phys. 1909, 335, 755–776. [Google Scholar] [CrossRef] [Green Version]
- Bochove, E.J.; Rao Gudimetla, V.S. Approach to atmospheric laser-propagation theory based on the extended Huygens–Fresnel principle and a self-consistency concept. J. Opt. Soc. Am. A 2017, 34, 140–145. [Google Scholar] [CrossRef]
- Kozawa, Y.; Sato, S. Focusing property of a double-ring-shaped radially polarized beam. Opt. Lett. 2006, 31, 820–822. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Howe, J.V.; Durst, M.; Zipfel, W.; Xu, C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 2005, 13, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.Q.; Lv, X.; Zhan, C.; Chen, W.R.; Xiong, W.H.; Luo, Q.; Jacques, S.L. Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism. Opt. Lett. 2006, 31, 1091–1093. [Google Scholar] [CrossRef]
- Dudorov, V.V.; Filimonov, G.A.; Kolosov, V.V. Research of the narrow-angle beam diffraction. Proc. SPIE 2004, 5396, 191–197. [Google Scholar]
- Lehmann, P.; Xie, W.; Allendorf, B.; Tereschenko, S. Coherence scanning and phase imaging optical interference microscopy at the lateral resolution limit. Opt. Express 2018, 26, 7376–7389. [Google Scholar] [CrossRef]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A Math. Phys. Sci. 1959, 253, 358–379. [Google Scholar]
- Leontovich, M.A.; Fock, V.A. Solution of the Problem of Propagation of Electromagnetic Waves along the Earth’s Surface by Method of Parabolic Equations. Phys.-Uspekhi 1946, 10, 13–23. [Google Scholar]
- Gbur, G. Partially coherent beam propagation in atmospheric turbulence. J. Opt. Soc. Am. 2014, 31, 2038–2045. [Google Scholar] [CrossRef] [Green Version]
- Bulygin, A.D.; Vrazhnov, D.A.; Sim, E.S.; Meglinski, I.V.; Kistenev, Y.V. Imitation of optical coherence tomography images by wave Monte Carlo-based approach implemented with the Leontovich–Fock equation. Opt. Eng. 2020, 59, 061626. [Google Scholar] [CrossRef] [Green Version]
- Buligin, A.D.; Kistenev, Y.V.; Meglinski, I.V.; Danilkin, E.A.; Vrazhnov, D.A. Imitation of ultra-sharp light focusing within turbid tissue-like scattering medium by using time-independent Helmholtz equation and method Monte Carlo. Proc. SPIE 2020, 11582, 115821N. [Google Scholar]
- Yanina, I.Y.; Dyachenko, P.A.; Abdurashitov, A.S.; Shalin, A.S.; Minin, I.V.; Minin, O.V.; Bulygin, A.D.; Vrazhnov, D.A.; Kistenev, Y.V.; Tuchin, V.V. Light distribution in fat cell layers at physiological temperatures. Sci. Rep. 2023, 13, 1073. [Google Scholar] [CrossRef] [PubMed]
- Lytaev, M.S.; Vladyko, A.G. Split-step Padé approximations of the Helmholtz equation for radio coverage prediction over irregular terrain. In Proceedings of the Advances in Wireless and Optical Communications (RTUWO), Riga, Latvia, 15–16 November 2018; pp. 179–184. [Google Scholar]
- Kotlyar, V.V.; Kovalev, A.A. Nonparaxial hypergeometric beams. J. Opt. A Pure Appl. Op. 2009, 11, 045711. [Google Scholar] [CrossRef]
- Hauge, J.C.; Crowdy, D. A new approach to the complex Helmholtz equation with applications to diffusion wave fields, impedance spectroscopy and unsteady Stokes flow. IMA J. Appl. Math. 2021, 86, 1287–1326. [Google Scholar] [CrossRef]
- Tuchin, V.V.; Utz, S.R.; Yaroslavsky, I.V. Tissue optics, light distribution, and spectroscopy. Opt. Eng. 1994, 33, 3178–3188. [Google Scholar] [CrossRef]
- Meglinski, I.; Matcher, S. Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions. Physiol. Meas. 2002, 23, 741–753. [Google Scholar] [CrossRef]
- Tuchin, V.V. Tissue Optics and Photonics: Biological Tissue Structures. J. Biomed. Photonics Eng. 2015, 1, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Sandby-Moller, J.; Poulsen, T.; Wulf, H.C. Epidermal thickness at different body sites: Relationship to age, geander, pigmentation, blood content, skin type and smoking habits. Acta Derm. Venereol. 2003, 83, 410–413. [Google Scholar] [CrossRef]
- Tsukahara, K.; Tamatsu, Y.; Sugawara, Y.; Shimada, K. The relationship between wrinkle depth and dermal thickness in the forehead and lateral canthal region. Arch. Dermatol. 2011, 147, 822–828. [Google Scholar] [CrossRef] [Green Version]
- Ha, R.Y.; Nojima, K.; Adams, W.P., Jr.; Brown, S.A. Analysis of facial skin thickness: Defining the relative thickness index. Plast. Reconstr. Surg. 2005, 115, 1769–1773. [Google Scholar] [CrossRef] [Green Version]
- Bashkatov, N.; Genina, E.A.; Tuchin, V.V. Optical properties of skin, subcutaneous, and muscle tissues: A review. J. Innov. Opt. Health Sci. 2011, 4, 9–38. [Google Scholar] [CrossRef]
- Tuchin, V.V. Light scattering study of tissues. Phys. Uspekhi 1997, 40, 495–515. [Google Scholar] [CrossRef]
- Meglinskii, I.V.; Bashkatov, A.N.; Genina, E.A.; Churmakov, D.Y.; Tuchin, V.V. Study of the possibility of increasing the probing depth by the method of reflection confocal microscopy upon immersion clearing of near-surface human skin layers. Quantum Electron. 2002, 32, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Bulygin, A.D. Algorithm of the parallel sweep method for numerical solution of the Gross–Pitaevskii equation with highest nonlinearities. Supercomput. Front. Innov. 2018, 5, 115–118. [Google Scholar]
- Glaser, A.K.; Chen, Y.; Liu, J.T.C. Fractal propagation method enables realistic optical microscopy simulations in biological tissues. Optica 2016, 3, 861–869. [Google Scholar] [CrossRef] [Green Version]
- Moshfeghi, M. Sidelobe suppression in annular array and axicon imaging systems. J. Acoust. Soc. Am. 1988, 83, 2202–2209. [Google Scholar] [CrossRef]
- Mikula, G.; Kolodziejczyk, A.; Makowski, M.; Prokopowicz, C.; Sypek, M. Difractive elements for imaging with extended depth of focus. Opt. Eng. 2005, 44, 058001. [Google Scholar] [CrossRef]
- Pierce, M.C.; Strasswimmer, J.; Hyle Park, B.; Cense, B.; de Boer, J.F. Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J. Biomed. Opt. 2004, 9, 287–291. [Google Scholar] [CrossRef]
- Varghese, B.; Verhagen, R.; Hussain, A.; Boudot, C.; Tai, Q.; Ding, S.; Holz, J.A.; Uzunbajakava, N.E. Quantitative assessment of birefringent skin structures in scattered light confocal imaging using radially polarized light. Sensors 2013, 13, 12527–12535. [Google Scholar] [CrossRef] [Green Version]
- Borovkova, M.; Bykov, A.; Popov, A.; Meglinski, I. Role of scattering and birefringence in phase retardation revealed by locus of Stokes vector on Poincaré sphere. J. Biomed. Opt. 2020, 25, 057001. [Google Scholar] [CrossRef]
- Sieryi, O.; Ushenko, V.; Syvokorovskaya, A.V.; Dubolazov, A.; Vanchulyak, O.; Ushenko, A.; Ushenko, Y.; Gorsky, M.; Tomka, Y.; Bykov, A.; et al. Optical anisotropy composition of benign and malignant prostate tissues revealed by Mueller matrix imaging. Biomed. Opt. Express 2022, 13, 6019–6034. [Google Scholar] [CrossRef] [PubMed]
- Ushenko, V.; Hogan, B.T.; Dubolazov, A.; Piavchenko, G.; Kuznetsov, S.L.; Ushenko, A.G.; Ushenko, Y.O.; Gorsky, M.; Bykov, A.; Meglinski, I. 3D Mueller matrix mapping of layered distributions of depolarisation degree for analysis of prostate adenoma and carcinoma diffuse tissues. Sci. Rep. 2021, 11, 5162. [Google Scholar] [CrossRef] [PubMed]
- Trifonyuk, L.; Sdobnov, A.; Baranowski, W.; Ushenko, V.; Olar, O.; Dubolazov, A.; Pidkamin, L.; Sidor, M.; Vanchuliak, O.; Motrich, A.; et al. Differential Mueller-matrix imaging of partially depolarizing optically anisotropic biological tissues. Laser. Med. Sci. 2020, 35, 877–891. [Google Scholar] [CrossRef]
- Das, N.K.; Chakraborty, S.; Dey, R.; Panigrahi, P.K.; Meglinski, I.; Ghosh, N. Quantitative assessment of submicron scale anisotropy in tissue multifractality by scattering Mueller matrix in the framework of Born approximation. Opt. Commun. 2018, 413, 172–178. [Google Scholar] [CrossRef]
- Kistenev, Y.V.; Nikolaev, V.V.; Kurochkina, O.S.; Borisov, A.V.; Vrazhnov, D.A.; Sandykova, E.A. Application of multiphoton imaging and machine learning to lymphedema tissue analysis. Biomed. Opt. Express 2019, 14, 3353–3368. [Google Scholar] [CrossRef]
- Martines-Arano, H.; Palacios-Barreto, S.; Castillo-Cruz, J.; Meda-Campaña, J.A.; García-Pérez, B.E.; Torres-Torres, C. Fractional photodamage triggered by chaotic attractors in human lung epithelial cancer cells. Int. J. Therm. Sci. 2022, 181, 107734. [Google Scholar] [CrossRef]
Skin Layer | , mm−1 | , mm−1 | Thickness, μm | ||
---|---|---|---|---|---|
Stratum corneum | 100 | 0.1 | 0.8 | 1.5 | 20 |
Epidermis | 45 | 0.15 | 0.8 | 1.34 | 80 |
Upper derma | 30 | 0.068 | 0.9 | 1.39 | 250 |
Reticular dermis | 25 | 0.095 | 0.95 | 1.4 | 450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulygin, A.; Meglinski, I.; Kistenev, Y. Non-Paraxial Effects in the Laser Beams Sharply Focused to Skin Revealed by Unidirectional Helmholtz Equation Approximation. Photonics 2023, 10, 907. https://doi.org/10.3390/photonics10080907
Bulygin A, Meglinski I, Kistenev Y. Non-Paraxial Effects in the Laser Beams Sharply Focused to Skin Revealed by Unidirectional Helmholtz Equation Approximation. Photonics. 2023; 10(8):907. https://doi.org/10.3390/photonics10080907
Chicago/Turabian StyleBulygin, Andrey, Igor Meglinski, and Yury Kistenev. 2023. "Non-Paraxial Effects in the Laser Beams Sharply Focused to Skin Revealed by Unidirectional Helmholtz Equation Approximation" Photonics 10, no. 8: 907. https://doi.org/10.3390/photonics10080907
APA StyleBulygin, A., Meglinski, I., & Kistenev, Y. (2023). Non-Paraxial Effects in the Laser Beams Sharply Focused to Skin Revealed by Unidirectional Helmholtz Equation Approximation. Photonics, 10(8), 907. https://doi.org/10.3390/photonics10080907