High-Responsivity Planar Photodetector Based on Methylammonium Lead Bromide Perovskite Thin Film
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Perovskite Thin Layers
3.2. Photodetectors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, W.S.; Park, B.W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Seok, S.I. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, H.; Mhamdi, A.; Hannachi, R.; Bouazizi, A. MAPbBr3 perovskite solar cells: Via a two-step deposition process. RSC Adv. 2019, 9, 12906–12912. [Google Scholar] [CrossRef]
- Tang, M.C.; Dang, H.X.; Lee, S.; Barrit, D.; Munir, R.; Wang, K.; Li, R.; Smilgies, D.M.; De Wolf, S.; Kim, D.Y.; et al. Wide and Tunable Bandgap MAPbBr3−xClx Hybrid Perovskites with Enhanced Phase Stability: In Situ Investigation and Photovoltaic Devices. Sol. RRL 2021, 5, 2000718. [Google Scholar] [CrossRef]
- Ling, Y.; Yuan, Z.; Tian, Y.; Wang, X.; Wang, J.C.; Xin, Y.; Hanson, K.; Ma, B.; Gao, H. Bright Light-Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets. Adv. Mater. 2016, 28, 305–311. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, H.; Ma, D.; Rosei, F. Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chem. Soc. Rev. 2018, 47, 5866–5890. [Google Scholar] [CrossRef] [PubMed]
- Mykhaylyk, V.B.; Kraus, H.; Saliba, M. Bright and Fast Scintillation of Organolead Per-ovskite 479 MAPbBr3 at Low Temperatures. Mater. Horiz. 2019, 6, 1740–1747. [Google Scholar] [CrossRef]
- Shrestha, S.; Fischer, R.; Matt, G.J.; Feldner, P.; Michel, T.; Osvet, A.; Levchuk, I.; Merle, B.; Golkar, S.; Chen, H.; et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photonics 2017, 11, 436–440. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, B.; Zhou, J.; Chen, Y.; Chu, Y.; Huang, J. Distinguishable Detection of Ultraviolet, Visible, and Infrared Spectrum with High-Responsivity Perovskite-Based Flexible Photosensors. Small 2018, 14, 1800527. [Google Scholar] [CrossRef]
- Yang, Z.; Deng, Y.; Zhang, X.; Wang, S.; Chen, H.; Yang, S.; Khurgin, J.; Fang, N.X.; Zhang, X.; Ma, R. High-performance single-crystalline perovskite thin-film photodetector. Adv. Mater. 2018, 30, 1704333. [Google Scholar] [CrossRef]
- Chaudhary, J.; Choudhary, S.; Negi, C.M.S.; Gupta, S.K.; Verma, A.S. Surface morphological, optical and electrical characterization of methylammonium lead bromide perovskite (CH3NH3PbBr3) thin film. Phys. Scr. 2019, 94, 105821. [Google Scholar] [CrossRef]
- Xu, Z.; Zeng, Y.; Meng, F.; Gao, S.; Fan, S.; Liu, Y.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A.A.; Xiao, J.; et al. A High-Performance Self-Powered Photodetector Based on MAPbBr3 Single Crystal Thin Film/MoS2 Vertical Van Der Waals Heterostructure. Adv. Mater. Interfaces 2022, 9, 1–7. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Zhang, B.; Wang, H.; Zhao, Y.; Wang, B. Recent progress in organometal halide perovskite photodetectors. Org. Electron. 2018, 52, 172–183. [Google Scholar] [CrossRef]
- Hu, W.; Cong, H.; Huang, W.; Huang, Y.; Chen, L.; Pan, A.; Xue, C. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci. Appl. 2019, 8, 106. [Google Scholar] [CrossRef]
- Rong, S.S.; Faheem, M.B.; Li, Y.B. Perovskite single crystals: Synthesis, properties, and applications. J. Electron. Sci. Technol. 2021, 19, 1–18. [Google Scholar] [CrossRef]
- Wang, W.; Xu, H.; Cai, J.; Zhu, J.; Ni, C.; Hong, F.; Fang, Z.; Xu, F.; Cui, S.; Xu, R.; et al. Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film. Opt. Express 2016, 24, 8411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, K.; Xia, W.; Zuo, Z. MAPbBr3 single crystal based metal-semiconductor-metal photodetector enhanced by localized surface plasmon. Mater. Res. Express 2020, 7, 125902. [Google Scholar] [CrossRef]
- Chen, L.C.; Lee, K.L.; Lee, K.Y.; Huang, Y.W.; Lin, R.M. Study of metal–semiconductor–metal CH3NH3PbBr3 perovskite photodetectors prepared by inverse temperature crystallization method. Sensors 2020, 20, 297. [Google Scholar] [CrossRef]
- Saidaminov, M.I.; Adinolfi, V.; Comin, R.; Abdelhady, A.L.; Peng, W.; Dursun, I.; Yuan, M.; Hoogland, S.; Sargent, E.H.; Bakr, O.M. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 2015, 6, 4–10. [Google Scholar] [CrossRef]
- Gavranovic, S.; Pospisil, J.; Zmeskal, O.; Novak, V.; Vanysek, P.; Castkova, K.; Cihlar, J.; Weiter, M. Electrode Spacing as a Determinant of the Output Performance of Planar-Type Photodetectors Based on Methylammonium Lead Bromide Perovskite Single Crystals. ACS Appl. Mater. Interfaces 2022, 14, 20159–20167. [Google Scholar] [CrossRef]
- Jang, D.M.; Park, K.; Kim, D.H.; Park, J.; Shojaei, F.; Kang, H.S.; Song, J.K. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 2015, 15, 5191–5199. [Google Scholar] [CrossRef]
- Choi, G.I.; Choi, H.W. A Study to Improve the Performance of Mixed Cation–Halide Perovskite-Based UVC Photodetectors. Nanomaterials 2022, 12, 1132. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Yan, L.; Qiu, R.; Xu, X.; Luo, W.; Zhou, H. Ambipolar solution-processed CH3NH3PbBr3 perovskite phototransistors with ultra-thin Al2O3 protective layer. In Proceedings of the 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC), Shenzhen, China, 6–8 June 2018; pp. 2–3. [Google Scholar]
- Wang, F.; Mei, J.; Wang, Y.; Zhang, L.; Zhao, H.; Zhao, D. Fast photoconductive responses in organometal halide perovskite photodetectors. ACS Appl. Mater. Interfaces 2016, 8, 2840–2846. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Q.; Xu, Z.; Xu, S.; Yang, P.; Deng, H.; Li, B.; Dong, Y.; Han, P.; Su, Y. Antisolvent solvothermal synthesis of MAPbBr3 nanocrystals for efficient solar photodecomposition of methyl orange. J. Colloid Interface Sci. 2021, 595, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, Y.; Ai, Q.; Gao, G.; Yuan, L.; Fang, Q.; Lou, J. In situ synthesis of lead-free halide perovskite–COF nanocomposites as photocatalysts for photoinduced polymerization in both organic and aqueous phases. ACS Mater. Lett. 2022, 4, 464–471. [Google Scholar] [CrossRef]
- Li, X.S.; Xu, Y.S.; Li, C.L.; Guo, Q.; Wang, G.; Xia, H.; Fang, H.H.; Shen, L.; Sun, H.B. Perovskite Single-Crystal Microwire-Array Photodetectors with Performance Stability beyond 1 Year. Adv. Mater. 2020, 32, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Li, Y.; Yang, Z.; Liu, S. Perovskite CH3NH3Pb(BrxI1−x)3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications. J. Mater. Chem. C 2016, 4, 9172–9178. [Google Scholar] [CrossRef]
- Rahil, M.; Ansari, R.M.; Ahmad, S.; Islam, S.S. Nanostructured Ruddlesden–Popper-Layered Lead Bromide Perovskites with Stable and Selected Wavelength for Photodetection Applications. ACS Appl. Nano Mater. 2023, 6, 5187–5199. [Google Scholar] [CrossRef]
- Shin, S.G.; Bark, C.W.; Choi, H.W. Study on performance improvements in perovskite-based ultraviolet sensors prepared using toluene antisolvent and CH3NH3Cl. Nanomaterials 2021, 11, 4. [Google Scholar] [CrossRef]
- Gassenq, A.; Gencarelli, F.; Van Campenhout, J.; Shimura, Y.; Loo, R.; Narcy, G.; Roelkens, G. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt. Express 2012, 20, 27297–27303. [Google Scholar] [CrossRef]
- Baronnier, J.; Houel, J.; Dujardin, C.; Kulzer, F.; Mahler, B. Doping MAPbBr3 hybrid perovskites with CdSe/CdZnS quantum dots: From emissive thin films to hybrid single-photon sources. Nanoscale 2022, 14, 5769–5781. [Google Scholar] [CrossRef]
- Fu, J.; Jamaludin, N.F.; Wu, B.; Li, M.; Solanki, A.; Ng, Y.F.; Mhaisalkar, S.; Huan, C.H.A.; Sum, T.C. Localized Traps Limited Recombination in Lead Bromide Perovskites. Adv. Energy Mater. 2019, 9, 1803119. [Google Scholar] [CrossRef]
- Baronnier, J.; Dujardin, C.; Mahler, B.; Houel, J. Low-Temperature Emission Dynamics of Methylammonium Lead Bromide Hybrid Perovskite Thin Films at the Sub-Micrometer Scale. Nanomaterials 2023, 13, 2376. [Google Scholar] [CrossRef] [PubMed]
- Che, X.; Traore, B.; Katan, C.; Fang, H.H.; Loi, M.A.; Even, J.; Kepenekian, M. Charge Trap Formation and Passivation in Methylammonium Lead Tribromide. J. Phys. Chem. C 2019, 123, 13812–13817. [Google Scholar] [CrossRef]
- Saidaminov, M.I.; Abdelhady, A.L.; Murali, B.; Alarousu, E.; Burlakov, V.M.; Peng, W.; Bakr, O.M. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 2015, 6, 7586. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.H.; Li, L.C.; Shellaiah, M.; Sun, K.W. Structural and Photophysical Properties of Methylammonium Lead Tribromide (MAPbBr3) Single Crystals. Sci. Rep. 2017, 7, 13643. [Google Scholar] [CrossRef] [PubMed]
- Droseros, N.; Tsokkou, D.; Banerji, N. Photophysics of Methylammonium Lead Tribromide Perovskite: Free Carriers, Excitons, and Sub-Bandgap States. Adv. Energy Mater. 2020, 10, 1903258. [Google Scholar] [CrossRef]
- Henisch, H.K. Metal-semiconductor Schottky barrier junctions and their applications. Proc. IEEE 1986, 74, 894. [Google Scholar] [CrossRef]
- Liu, X.; Fu, J.; Zhao, D.; Hao, Y.; Zhu, H.; Xu, M.; Xu, Y. MAPbBr3−xIx Crystals Improved by Accurate Solution-Grown Procedure for Alpha Particle Detection. Front. Phys. 2020, 7, 1–6. [Google Scholar] [CrossRef]
- Wenger, B.; Nayak, P.K.; Wen, X.; Kesava, S.V.; Noel, N.K.; Snaith, H.J. Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals. Nat. Commun. 2017, 8, 1. [Google Scholar] [CrossRef]
- Ulatowski, A.M.; Wright, A.D.; Wenger, B.; Buizza, L.R.; Motti, S.G.; Eggimann, H.J.; Herz, L.M. Charge-Carrier Trapping Dynamics in Bismuth-Doped Thin Films of MAPbBr3 Perovskite. J. Phys. Chem. Lett. 2020, 11, 3681–3688. [Google Scholar] [CrossRef]
- Chatterjee, K.; Nayak, M.; Jahid Akhtar, A.; Saha, S.K. Sn doping enhanced current rectification in MAPbBr3 nanocrystal-metal junction for photodetection. Mater. Today Proc. 2022, 66, 3205–3210. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, P.; Houel, J.; Dreveton, N.; Mahler, B.; Gassenq, A. High-Responsivity Planar Photodetector Based on Methylammonium Lead Bromide Perovskite Thin Film. Photonics 2023, 10, 1043. https://doi.org/10.3390/photonics10091043
Mai P, Houel J, Dreveton N, Mahler B, Gassenq A. High-Responsivity Planar Photodetector Based on Methylammonium Lead Bromide Perovskite Thin Film. Photonics. 2023; 10(9):1043. https://doi.org/10.3390/photonics10091043
Chicago/Turabian StyleMai, Pavlo, Julien Houel, Nathan Dreveton, Benoit Mahler, and Alban Gassenq. 2023. "High-Responsivity Planar Photodetector Based on Methylammonium Lead Bromide Perovskite Thin Film" Photonics 10, no. 9: 1043. https://doi.org/10.3390/photonics10091043
APA StyleMai, P., Houel, J., Dreveton, N., Mahler, B., & Gassenq, A. (2023). High-Responsivity Planar Photodetector Based on Methylammonium Lead Bromide Perovskite Thin Film. Photonics, 10(9), 1043. https://doi.org/10.3390/photonics10091043