Two-Dimensional Quasi-Periodic Diffraction Properties of the Scalar and Vector Optical Fields
Abstract
:1. Introduction
2. The Design of Penrose Tiling Masks and Basic Diffraction Properties
3. The “Weeding” Function of the Iteration Number n in PTMs
4. The Label of the Golden Ratio in the Diffraction Patterns
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, Y.; Xie, C. Circular Fibonacci gratings. Appl. Opt. 2011, 50, G142–G148. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Banerjee, V.; Senthilkumaran, P. Fractal signatures in the aperiodic Fibonacci grating. Opt. Lett. 2014, 39, 2557–2560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jiang, Z.; Tan, W.; Ge, R.; Liu, J. Non-near-field sub-diffraction focusing in the visible wavelength range by a Fibonacci subwavelength circular grating. J. Opt. Soc. Am. A 2018, 35, 1701–1704. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Sun, Z.; Kwok, H.S.; Srivastava, A.K. Low voltage tunable liquid crystal Fibonacci grating. Liq. Cryst. 2020, 47, 1162–1169. [Google Scholar] [CrossRef]
- Sun, Z.B.; Yuan, Z.N.; Nikita, A.; Kwok, H.S.; Srivastava, A.K. Fast-switchable, high diffraction-efficiency ferroelectric liquid crystal Fibonacci grating. Opt. Express 2021, 29, 13978–13986. [Google Scholar] [CrossRef]
- Xia, T.; Cheng, S.; Tao, S. Two pairs of twin foci with the golden mean generated by a modified Fibonacci zone plate. J. Opt. 2019, 21, 035602. [Google Scholar] [CrossRef]
- Rafighdoost, J.; Zhou, Y.; Li, X.; Yan, S.; Zhou, M.; Yao, B. Azimuthally phase-shifted Fibonacci zone plate. J. Opt. Soc. Am. B 2020, 37, 3557–3563. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, M.; Xia, T.; Tao, S. Fibonacci-like zone plate. Laser Phys. 2018, 28, 066203. [Google Scholar] [CrossRef]
- Wu, K.; Wang, G.P. One-dimensional Fibonacci grating for far-field super-resolution imaging. Opt. Lett. 2013, 38, 2032–2034. [Google Scholar] [CrossRef]
- Wu, K.; Wang, G.P. Two-dimensional Fibonacci grating for far-field super-resolution imaging. Sci. Rep. 2016, 6, 38651. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.; Ferrando, V.; Furlan, W.D.; Monsoriu, J.A. Diffractive m-bonacci lenses. Opt. Express 2017, 25, 8267–8273. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Liu, X.; Wang, L. High-channel-count plasmonic filter with the metal–insulator–metal Fibonacci-sequence gratings. Opt. Lett. 2010, 35, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q. Cylindrical vector beams: From mathematical concepts to applications. Adv. Opt. Photonics 2009, 1, 1–57. [Google Scholar] [CrossRef]
- Forbes, A.; de Oliveira, M.; Dennis, M.R. Structured light. Nat. Photonics 2021, 15, 253–262. [Google Scholar] [CrossRef]
- Bauer, T.; Banzer, P.; Karimi, E.; Orlov, S.; Rubano, A.; Marrucci, L.; Santamato, E.; Boyd, R.W.; Leuchs, G. Observation of optical polarization Möbius strips. Science 2015, 347, 964–966. [Google Scholar] [CrossRef]
- Devlin, R.C.; Ambrosio, A.; Rubin, N.A.; Mueller, J.B.; Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 2017, 358, 896–901. [Google Scholar] [CrossRef]
- Larocque, H.; Sugic, D.; Mortimer, D.; Taylor, A.J.; Fickler, R.; Boyd, R.W.; Dennis, M.R.; Karimi, E. Reconstructing the topology of optical polarization knots. Nat. Phys. 2018, 14, 1079–1082. [Google Scholar] [CrossRef]
- Gao, X.Z.; Zhao, J.H.; Wang, M.S.; Liu, J.J.; Zhang, G.B.; Pan, Y. Bipolar-variant spin angular momentum and its evolution in a tight focusing process. Phys. Rev. A 2020, 102, 063514. [Google Scholar] [CrossRef]
- Zhao, J.H.; Pan, Y.; Gao, X.Z.; Ma, R.; Man, Z.X.; Ren, Z.C.; Tu, C.; Li, Y.; Wang, H.T. Five-dimensional Poincaré sphere system for representing azimuthally varying vector optical fields. Phys. Rev. A 2022, 106, 023506. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, H.; Wu, S.; Wu, T.; Qiao, X.; Gao, Z.; Agarwal, R.; Longhi, S.; Litchinitser, N.M.; Ge, L.; et al. Spin–orbit microlaser emitting in a four-dimensional Hilbert space. Nature 2022, 612, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Kaneko, Y.; Nakamoto, Y.; Noda, K.; Sasaki, T.; Kawatsuki, N.; Ono, H. Mode demultiplexing of vector beams using crossed-fork-shaped polarization grating fabricated by photoalignment of photo-crosslinkable liquid crystal polymer. Appl. Phys. Lett. 2019, 115, 061104. [Google Scholar] [CrossRef]
- Dorn, R.; Quabis, S.; Leuchs, G. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 2003, 91, 233901. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Li, S.M.; Mao, L.; Kong, L.J.; Li, Y.; Tu, C.; Wang, P.; Wang, H.T. Vector optical fields with polarization distributions similar to electric and magnetic field lines. Opt. Express 2013, 21, 16200–16209. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.; Orlov, S.; Peschel, U.; Banzer, P.; Leuchs, G. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams. Nat. Photonics 2014, 8, 23–27. [Google Scholar] [CrossRef]
- Hu, H.; Gan, Q.; Zhan, Q. Generation of a nondiffracting superchiral optical needle for circular dichroism imaging of sparse subdiffraction objects. Phys. Rev. Lett. 2019, 122, 223901. [Google Scholar] [CrossRef]
- Gao, X.Z.; Zhao, P.C.; Sun, X.F.; Yang, F.; Pan, Y.; Li, Y.; Tu, C.; Wang, H.T. Highly purified transversely polarized optical needle generated by the hybridly polarized vector optical field with hyperbolic symmetry. J. Opt. 2020, 22, 105604. [Google Scholar] [CrossRef]
- Vella, A.; Head, S.T.; Brown, T.G.; Alonso, M.A. Simultaneous measurement of multiple parameters of a subwavelength structure based on the weak value formalism. Phys. Rev. Lett. 2019, 122, 123603. [Google Scholar] [CrossRef]
- Du, L.; Yang, A.; Zayats, A.V.; Yuan, X. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 2019, 15, 650–654. [Google Scholar] [CrossRef]
- Ji, Z.; Liu, W.; Krylyuk, S.; Fan, X.; Zhang, Z.; Pan, A.; Feng, L.; Davydov, A.; Agarwal, R. Photocurrent detection of the orbital angular momentum of light. Science 2020, 368, 763–767. [Google Scholar] [CrossRef]
- Dorrah, A.H.; Rubin, N.A.; Zaidi, A.; Tamagnone, M.; Capasso, F. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics 2021, 15, 287–296. [Google Scholar] [CrossRef]
- Ndagano, B.; Perez-Garcia, B.; Roux, F.S.; McLaren, M.; Rosales-Guzman, C.; Zhang, Y.; Mouane, O.; Hernandez-Aranda, R.I.; Konrad, T.; Forbes, A. Characterizing quantum channels with non-separable states of classical light. Nat. Phys. 2017, 13, 397–402. [Google Scholar] [CrossRef]
- Penrose, R. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 1974, 10, 266–271. [Google Scholar]
- Penrose, R. Pentaplexity a class of non-periodic tilings of the plane. Math. Intell. 1979, 2, 32–37. [Google Scholar] [CrossRef]
- Harriss, E.O. On Canonical Substitution Tilings. Ph.D. Thesis, University of London, London, UK, 2004. [Google Scholar]
- Peng, B.Y.; Fu, X.J. Configurations of the Penrose Tiling beyond Nearest Neighbors. Chin. Phys. Lett. 2015, 32, 056101. [Google Scholar] [CrossRef]
- Yan, X.; Yan, W.Q.; Liu, L.; Lu, Y. Penrose tiling for visual secret sharing. Multimed. Tools Appl. 2020, 79, 32693–32710. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 1999; Volume 461, pp. 401–424. [Google Scholar]
- Pan, Y.; Gao, X.Z.; Zhang, X.; Zhao, J.H.; Zhao, P.C.; Li, Y.; Tu, C.; Wang, H.T. Diffraction properties and applications of spatially structured optical fields with fractal amplitude masks. Appl. Opt. 2019, 58, 8631–8637. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics; Roberts and Company Publishers: Greenwood Village, CO, USA, 2005. [Google Scholar]
- Pan, Y.; Gao, X.Z.; Zhang, G.L.; Li, Y.; Tu, C.; Wang, H.T. Spin angular momentum density and transverse energy flow of tightly focused kaleidoscope-structured vector optical fields. APL Photonics 2019, 4, 096102. [Google Scholar] [CrossRef]
- Sun, X.F.; Gao, X.Z.; Zhang, G.B.; Yang, F.; Liu, J.J.; Ma, R.; Man, Z.X.; Pan, Y. The appearance and annihilation of the spin angular momentum for the multi-polar vector optical field in the focal plane. APL Photonics 2023, 8, 056101. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, X.Z.; Cai, M.Q.; Zhang, G.L.; Li, Y.; Tu, C.; Wang, H.T. Fractal vector optical fields. Opt. Lett. 2016, 41, 3161–3164. [Google Scholar] [CrossRef]
- You, J.Q.; Yan, J.R.; Zhong, J.X.; Yan, X.H. Local electronic properties of two-dimensional Penrose tilings: A renormalization-group approach. Phys. Rev. B 1992, 45, 7690. [Google Scholar] [CrossRef] [PubMed]
- Marples, C.R.; Williams, P.M. The Golden Ratio in Nature: A Tour Across Length Scales. Symmetry 2022, 14, 2059. [Google Scholar] [CrossRef]
- Hemenway, P. Divine Proportion: Φ in Art, Nature, and Science; Sterling Publishing Company: New York, NY, USA, 2005. [Google Scholar]
- Wang, N.; Ma, J.; Jin, D.; Yu, B. A special golden curve in human upper limbs’ length proportion: A functional partition which is different from anatomy. BioMed Res. Int. 2017, 2017, 4158561. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.S.; Gao, X.Z.; Zhao, J.H.; Sun, X.F.; Pan, Y.; Xia, Y. Flexibly modulated Poincaré sphere vector optical field in input and focal planes. Opt. Express 2021, 29, 21071–21083. [Google Scholar] [CrossRef]
- Wang, X.L.; Li, Y.; Chen, J.; Guo, C.S.; Ding, J.; Wang, H.T. A new type of vector fields with hybrid states of polarization. Opt. Express 2010, 18, 10786–10795. [Google Scholar] [CrossRef]
- Lerman, G.M.; Stern, L.; Levy, U. Generation and tight focusing of hybridly polarized vector beams. Opt. Express 2010, 18, 27650–27657. [Google Scholar] [CrossRef]
- Beckley, A.M.; Brown, T.G.; Alonso, M.A. Full poincaré beams. Opt. Express 2010, 18, 10777–10785. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.; Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light. Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef]
n | The Distance Ratio of the Blue Featured Spots | Deviation with the Golden Ratio | The Distance Ratio of the Red Featured Spots | Deviation with the Golden Ratio |
---|---|---|---|---|
3 | 1.5430 | 1.3872 | ||
4 | 1.5718 | 1.5370 | ||
5 | 1.6083 | 1.5783 | ||
6 | 1.6162 | 1.5965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Sun, X.-F.; Zhang, G.-B.; Li, Q.-L.; Kong, Y.-N.; Zhao, T.-F.; Gao, X.-Z. Two-Dimensional Quasi-Periodic Diffraction Properties of the Scalar and Vector Optical Fields. Photonics 2023, 10, 1045. https://doi.org/10.3390/photonics10091045
Pan Y, Sun X-F, Zhang G-B, Li Q-L, Kong Y-N, Zhao T-F, Gao X-Z. Two-Dimensional Quasi-Periodic Diffraction Properties of the Scalar and Vector Optical Fields. Photonics. 2023; 10(9):1045. https://doi.org/10.3390/photonics10091045
Chicago/Turabian StylePan, Yue, Xue-Feng Sun, Guang-Bo Zhang, Qing-Lu Li, Ya-Ning Kong, Tian-Fei Zhao, and Xu-Zhen Gao. 2023. "Two-Dimensional Quasi-Periodic Diffraction Properties of the Scalar and Vector Optical Fields" Photonics 10, no. 9: 1045. https://doi.org/10.3390/photonics10091045
APA StylePan, Y., Sun, X. -F., Zhang, G. -B., Li, Q. -L., Kong, Y. -N., Zhao, T. -F., & Gao, X. -Z. (2023). Two-Dimensional Quasi-Periodic Diffraction Properties of the Scalar and Vector Optical Fields. Photonics, 10(9), 1045. https://doi.org/10.3390/photonics10091045