Effects of Acceptors on the Charge Photogeneration Dynamics of PM6-Based Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Device Fabrication
2.2. Optical and Morphological Characterizations of Active Layer
2.3. Electrical Measurement and Transient Absorption Spectroscopy
3. Results and Discussion
3.1. Photovoltaic Performance of OSCs
3.2. Absorption Spectra of Active Layers
3.3. Morphology of Active Layers
3.4. Transient Absorption Spectra of Active Layers
3.5. Electrical Characteristics of Devices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oh, J.Y.; Shin, M.; Lee, T.; Jang, W.S.; Lee, Y.J.; Kim, C.S.; Kang, J.W.; Myoung, J.M.; Baik, H.K.; Jeong, U. Highly Bendable Large-area Printed Bulk Heterojunction Film Prepared by the Self-seeded Growth of Poly(3-hexylthiophene) Nanofibrils. Macromolecules 2013, 46, 3534–3543. [Google Scholar] [CrossRef]
- Gu, X.; Zhou, Y.; Gu, K.; Kurosawa, T.; Guo, Y.; Li, Y.; Lin, H.; Schroeder, B.C.; Yan, H.; Molina-Lopez, F.; et al. Roll-to-Roll Printed Large-area All-Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend. Adv. Energy Mater. 2017, 7, 1602742. [Google Scholar] [CrossRef]
- Zhang, T.; An, C.; Xu, Y.; Bi, P.; Chen, Z.; Wang, J.; Yang, N.; Yang, Y.; Xu, B.; Yao, H.; et al. A Medium-Bandgap Nonfullerene Acceptor Enabling Organic Photovoltaic Cells with 30% Efficiency under Indoor Artificial Light. Adv. Mater. 2022, 34, 2207009. [Google Scholar] [CrossRef]
- Krebs, F.C. Roll−to−Roll Fabrication of Monolithic Large−area Polymer Solar Cells Free from Indium-Tin-Oxide. Sol. Energy Mater. Sol. Cells 2009, 93, 1636–1641. [Google Scholar] [CrossRef]
- Thirugnanasambandam, M.; Iniyan, S.; Goic, R. A Review of Solar Thermal Technologies. Renew. Sust. Energy Rev. 2010, 14, 312–322. [Google Scholar] [CrossRef]
- Cook, T.R.; Dogutan, D.K.; Reece, S.Y.; Surendranath, Y.; Nocera, D.G. Solar Energy Supply and Storage for the Legacy and Non-legacy Worlds. Chem. Rev. 2010, 110, 6474–6502. [Google Scholar] [CrossRef]
- Zhang, T.; An, C.; Bi, P.; Lv, Q.; Qin, J.; Hong, L.; Cui, Y.; Zhang, S.; Hou, J. A Thiadiazole-Based Conjugated Polymer with Ultradeep HOMO Level and Strong Electroluminescence Enables 18.6% Efficiency in Organic Solar Cell. Adv. Energy Mater. 2021, 11, 2101705. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Tandem Organic Solar Cell with 20.2% Efficiency. Joule 2022, 6, 171–184. [Google Scholar] [CrossRef]
- Zhang, T.; An, C.; Lv, Q.; Qin, J.; Cui, Y.; Zheng, Z.; Xu, B.; Zhang, S.; Zhang, J.; He, C.; et al. Optimizing Polymer Aggregation and Blend Morphology for Boosting the Photovoltaic Performance of Polymer Solar Cells via a Random Terpolymerization Strategy. J Energy Chem. 2021, 59, 30–37. [Google Scholar] [CrossRef]
- An, C.; Qin, Y.; Zhang, T.; Lv, Q.; Qin, J.; Zhang, S.; He, C.; Ade, H.; Hou, J. Optimization of Active Layer Morphology by Small-Molecule Donor Design Enables Over 15% Efficiency in Small-Molecule Organic Solar Cells. J Mater. Chem. A 2021, 9, 13653–13660. [Google Scholar] [CrossRef]
- Kumar, S.; Panigrahi, D.; Dhar, A. Efficiency Enhancement of ZnO Based Inverted BHJ Solar Cells via Interface Engineering using C70 Modifier. Org. Electron. 2016, 38, 1–7. [Google Scholar] [CrossRef]
- Heo, S.W.; Song, K.W.; Choi, M.H.; Sung, T.H.; Moon, D.K. Patternable Solution Process for Fabrication of Flexible Polymer Solar Cells using PDMS. Sol. Energy. Mater. Sol. Cells 2011, 95, 3564–3572. [Google Scholar] [CrossRef]
- An, Q.; Wang, J.; Gao, W.; Ma, X.; Hu, Z.; Gao, J.; Xu, C.; Hao, M.; Zhang, X.; Yang, C.; et al. Alloy−like Ternary Polymer Solar Cells with Over 17.2% Efficiency. Sci. Bull. 2020, 65, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, J.; Gao, J.; Hu, Z.; Xu, C.; Zhang, X.; Zhang, F. Achieving 17.4% Efficiency of Ternary Organic Photovoltaics with Two Well-Compatible Nonfullerene Acceptors for Minimizing Energy Loss. Adv. Energy Mater. 2020, 10, 2001404. [Google Scholar] [CrossRef]
- Xu, W.; Ma, X.; Son, J.H.; Jeong, S.Y.; Niu, L.; Xu, C.; Zhang, S.; Zhou, Z.; Gao, J.; Woo, H.Y.; et al. Smart Ternary Strategy in Promoting the Performance of Polymer Solar Cells Based on Bulk-Heterojunction or Layer-By-Layer Structure. Small 2022, 18, 2104215. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, L.; Ma, X.; Xibei, Y.; Zheng, Y.; Liu, Z.; Gao, X.; Zhang, J.; Liu, Z.; Zhang, F. Approaching 18% Efficiency of Ternary Layer-by-Layer Polymer Solar Cells with Alloyed Acceptors. Chem. Eng. J 2023, 462, 142327. [Google Scholar] [CrossRef]
- Afzal, A.M.; Bae, I.G.; Aggarwal, Y.; Park, J.; Jeong, H.R.; Choi, E.H.; Park, B. Highly Efficient Self−powered Perovskite Photodiode with an Electron−blocking Hole−transport NiOx Layer. Sci. Rep. 2021, 11, 169. [Google Scholar] [CrossRef]
- Lee, H.-J.; Na, S.-I. Investigation of PCBM/ZnO and C60/BCP-based Electron Transport Layer for High-performance p-i-n Perovskite Solar Cells. J. Alloys Compd. 2022, 921, 166007. [Google Scholar] [CrossRef]
- An, C.; Zheng, Z.; Hou, J. Recent Progress in Wide Bandgap Conjugated Polymer Donors for High-performance Nonfullerene Organic Photovoltaics. Chem. Commun. 2020, 56, 4750–4760. [Google Scholar] [CrossRef]
- Ma, X.; Zeng, A.; Gao, J.; Hu, Z.; Xu, C.; Son, J.H.; Jeong, S.Y.; Zhang, C.; Li, M.; Wang, K.; et al. Approaching 18% Efficiency of Ternary Organic Photovoltaics with Wide Bandgap Polymer Donor and Well Compatible Y6:Y6−10 as Acceptor. Natl. Sci. Rev. 2021, 8, 15–24. [Google Scholar] [CrossRef]
- Cha, H.; Zheng, Y.; Dong, Y.; Lee, H.H.; Wu, J.; Bristow, H.; Zhang, J.; Lee, H.K.H.; Tsoi, W.C.; Bakulin, A.A.; et al. Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells. Adv. Energy Mater. 2020, 10, 2001149. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, X.; Ma, X.; Zhou, H.; Li, X.; Jeong, S.Y.; Woo, H.Y.; Zhou, Z.; Sun, Q.; Zhang, F. Achieving 15.81% and 15.29% Efficiency of All-Polymer Solar Cells Based on Layer−by−Layer and Bulk Heterojunction structures. J. Mater. Chem. A 2022, 10, 13492–13499. [Google Scholar] [CrossRef]
- Chen, X.; Wang, D.; Wang, Z.; Li, Y.; Zhu, H.; Lu, X.; Chen, W.; Qiu, H.; Zhang, Q. 18.02% Efficiency Ternary Organic Solar Cells with a Small-Molecular Donor Third Component. Chem. Eng. J. 2021, 424, 130397. [Google Scholar] [CrossRef]
- Song, J.; Zhu, L.; Li, C.; Xu, J.; Wu, H.; Zhang, X.; Zhang, Y.; Tang, Z.; Liu, F.; Sun, Y. High−Efficiency Organic Solar Cells with Low Voltage Loss Induced by Solvent Additive Strategy. Matter 2021, 4, 2542–2552. [Google Scholar] [CrossRef]
- Zhao, L.; Ji, H.; Li, S.; Shi, Q.; Zhu, C.; Wang, W.; Huang, D. The Charge Dynamics of PBDB-TF:IT−4F Based Non-fullerene Organic Solar Cells with 1,8-diiodooctane Additive. Appl. Surf. Sci. 2021, 569, 151120. [Google Scholar] [CrossRef]
- Günes, S.; Neugebauer, H.; Sariciftci, N.S. Conjugated Polymer−Based Organic Solar Cells. Chem. Rev. 2007, 107, 1324–1388. [Google Scholar] [CrossRef]
- Coropceanu, V.; Cornil, J.; Silva, D.A.; Olivier, Y.; Silbey, R.; Bredas, J.L. Charge Transport in Organic Semiconductors. Chem. Rev. 2007, 107, 926. [Google Scholar] [CrossRef]
- Sariciftci, N.; Smilowitz, L.; Heeger, A.; Wudl, F. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258, 1474–1476. [Google Scholar] [CrossRef]
- Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sumbce, T.; Lam, Y. The Origin of High Efficiency in Low-Temperature Solution-Processable Bilayer Organometal Halide Hybrid Solar Cells. Energ. Environ. Sci. 2014, 7, 399–407. [Google Scholar] [CrossRef]
- Hu, R.; Liu, Y.; Cheng, J.; Chen, Y.; Zhang, W.; Liu, H. Effect of [6,6-phenyl C61- butyric Acid Methyl Ester Phase on the Charge Generation of Poly(3- hexylthiophene)-based Polymer Solar Cells. J. Power Sources 2018, 390, 87–92. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, B.; Fang, J.; Zhai, T.; Wang, Y.; Li, G.; Zhang, J.; Wei, Z.; Duhm, S.; Guo, X.; et al. Surface Modification of ZnO Electron Transport Layers with Glycine for Efficient Inverted Non-fullerene Polymer Solar Cells. Org. Electron. 2019, 70, 25–31. [Google Scholar] [CrossRef]
- Jasiunas, R.; Zhang, H.; Devizis, A.; Franckevicius, M.; Gao, F.; Gulbinas, V. Thermally Activated Reverse Electron Transfer Limits Carrier Generation Efficiency in PM6:Y6 Non-Fullerene Organic Solar Cells. Solar RRL 2022, 6, 2100963. [Google Scholar] [CrossRef]
- Xu, X.; Jing, W.; Meng, H.; Guo, Y.; Yu, L.; Li, R.; Peng, Q. Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells. Adv. Mater. 2023, 35, 2208997. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. Adv. Mater. 2015, 27, 4655–4660. [Google Scholar] [CrossRef]
- Zhang, K.N.; Jiang, Z.N.; Wang, T.; Qiao, J.W.; Feng, L.; Qin, C.C.; Yin, H.; So, S.K.; Hao, X.T. Exploring the Mechanisms of Exciton Diffusion Improvement in Ternary Polymer Solar Cells: From Ultrafast to Ultraslow Temporal Scale. Nano Energy 2021, 79, 105513. [Google Scholar] [CrossRef]
- Liu, P.; Wang, W.; Liu, S.; Yang, H.; Shao, Z. Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Adv. Energy Mater. 2019, 9, 1803017. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Genene, Z.; Ma, W.; Mammo, W.; Yartsev, A.; Andersson, M.R.; Janssen, R.A.J.; et al. 9.0% Power Conversion Efficiency from Ternary All-Polymer Solar Cells. Energy Environ. Sci. 2017, 10, 2212–2221. [Google Scholar] [CrossRef]
- Liu, S.; Chen, D.; Hu, X.; Xing, Z.; Wan, J.; Zhang, L.; Tan, L.; Zhou, W.; Chen, Y. PrinTableand Large-Area Organic Solar Cells Enabled by a Ternary Pseudo-Planar Heterojunction Strategy. Adv. Funct. Mater. 2020, 30, 2003223. [Google Scholar] [CrossRef]
- Jiang, W.; Yu, R.; Liu, Z.; Peng, R.; Mi, D.; Hong, L.; Wei, Q.; Hou, J.; Kuang, Y.; Ge, Z. Ternary Nonfullerene Polymer Solar Cells with 12.16% Efficiency by Introducing One Acceptor with Cascading Energy Level and Complementary Absorption. Adv. Mater. 2018, 30, 1703005. [Google Scholar] [CrossRef]
- Ge, Y.; Hu, L.; Zhang, L.; Fu, Q.; Xu, G.; Xing, Z.; Huang, L.; Zhou, W.; Chen, Y. Polyolefin Elastomer as the Anode Interfacial Layer for Improved Mechanical and Air Stabilities in Nonfullerene Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 10706–10716. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; Zhu, C.; Qin, S.; Angunawela, I.; Wan, Y.; Ade, H.; Li, Y. Introducing Low-Cost Pyrazine Unit into Terpolymer Enables High-Performance Polymer Solar Cells with Efficiency of 18.23%. Adv. Funct. Mater. 2022, 32, 2109271. [Google Scholar] [CrossRef]
- Zhang, F.; Inganäs, O.; Zhou, Y.; Vandewal, K. Development of Polymer-Fullerene Solar Cells. Natl. Sci. Rev. 2016, 3, 222–239. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, M.; Ma, X.; Zhu, X.; Jeong, S.Y.; Woo, H.Y.; Zhang, J.; Du, W.; Wang, J.; Liu, X.; et al. Over 17.4% Efficiency of Layer-by-Layer All-Polymer Solar Cells by Improving Exciton Utilization in Acceptor Layer. Adv. Funct. Mater. 2023, 33, 2215204. [Google Scholar] [CrossRef]
- Matsuzaki, H.; Furube, A.; Katoh, R.; Singh, S.P.; Sonar, P.; Williams, E.L.; Vijila, C.; Subramanian, G.S.; Gorelik, S.; Hobley, J. Excited-State Dynamics in Diketopyrrolopyrrole-based Copolymer for Organic Photovoltaics Investigated by Transient Optical Spectroscopy. Jpn. J. Appl. Phys. 2014, 53, 01AB11. [Google Scholar] [CrossRef]
- Marsh, R.A.; Hodgkiss, J.M.; Albert-Seifried, S.; Friend, R.H. Effect of Annealing on P3HT:PCBM Charge Transfer and Nanoscale Morphology Probed by Ultrafast Spectroscopy. Nano Lett. 2010, 10, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hu, R.; Li, D.; Huo, M.M.; Ai, X.C.; Zhang, J.P. Primary Dynamics of Exciton and Charge Photogeneration in Solvent Vapor Annealed P3HT/PCBM Films. J. Phys. Chem. C 2012, 116, 4298–4310. [Google Scholar] [CrossRef]
- Hu, R.; Liu, Y.; Tian, L.; Zhang, W.; He, X. Influence of Thermal Annealing on the Charge Generation and Transport in PM6-based Nonfullerene Solar Cells. J. Mater. Sci. Mater. Electron. 2021, 32, 22879–22889. [Google Scholar] [CrossRef]
- Clarke, T.M.; Jamieson, F.C.; Durrant, J.R. Transient Absorption Studies of Bimolecular Recombination Dynamics in Polythiophene/Fullerene Blend Films. J. Phys. Chem. C 2009, 113, 20934–20941. [Google Scholar] [CrossRef]
- Lo, C.K.; Gautam, B.R.; Selter, P.; Zheng, Z.; Oosterhout, S.D.; Constantinou, I.; Knitsch, R.; Wolfe, R.M.W.; Yi, X.; Brédas, J.L.; et al. Every Atom Counts: Elucidating the Fundamental Impact of Structural Change in Conjugated Polymers for Organic Photovoltaics. Chem. Mater. 2018, 30, 2995–3009. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Zheng, D.; Yu, J. Effects of Different Polar Solvents for Solvent Vapor Annealing Treatment on the Performance of Polymer Solar Cells. Org. Electron. 2014, 15, 2647–2653. [Google Scholar] [CrossRef]
Active Layers | VOC (V) | JSC (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|
PM6:IT−4F | 0.816 ± 0.012 | 22.13 ± 0.21 | 71.02 ± 0.23 | 12.82 ± 0.21 |
PM6:PC71BM | 0.916 ± 0.016 | 15.90 ± 0.30 | 60.30 ± 0.36 | 8.78 ± 0.30 |
Probe Wavelengths | Fitting Parameters and Apparent Lifetimes | ||||||
---|---|---|---|---|---|---|---|
a1 | τ1 (ps) | a2 | τ2 (ps) | a3 | τ3 (ps) | ||
PM6:IT−4F | 900 nm | 0.33 | 4.1 | 0.45 | 45 | 0.26 | 4948 |
700 nm | −0.84 | 0.24 | 0.73 | 14 | −0.22 | 5000 | |
PM6:PC71BM | 900 nm | 0.37 | 10.9 | 0.33 | 49 | 0.31 | 12,638 |
700 nm | 0.43 | 18.1 | 0.20 | 111 | 0.34 | 11,712 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.; Zhou, L.; Liu, Y.; Cai, Z.; Wen, G.; Zhang, W. Effects of Acceptors on the Charge Photogeneration Dynamics of PM6-Based Solar Cells. Photonics 2023, 10, 989. https://doi.org/10.3390/photonics10090989
Hu R, Zhou L, Liu Y, Cai Z, Wen G, Zhang W. Effects of Acceptors on the Charge Photogeneration Dynamics of PM6-Based Solar Cells. Photonics. 2023; 10(9):989. https://doi.org/10.3390/photonics10090989
Chicago/Turabian StyleHu, Rong, Liping Zhou, Yurong Liu, Zekai Cai, Guanzhao Wen, and Wei Zhang. 2023. "Effects of Acceptors on the Charge Photogeneration Dynamics of PM6-Based Solar Cells" Photonics 10, no. 9: 989. https://doi.org/10.3390/photonics10090989
APA StyleHu, R., Zhou, L., Liu, Y., Cai, Z., Wen, G., & Zhang, W. (2023). Effects of Acceptors on the Charge Photogeneration Dynamics of PM6-Based Solar Cells. Photonics, 10(9), 989. https://doi.org/10.3390/photonics10090989