Multi-Mode Vector Light Field Generation Using Modified Off-Axis Interferometric Holography and Liquid Crystal Spatial Light Modulators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Device and Method
2.2. Principle Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Gao, K.; Han, L.; Liu, S.; Mei, T.; Xiao, F.; Zhao, J. Nanometric displacement sensor with a switchable measuring range using a cylindrical vector beam excited silicon nanoantenna. Opt. Express 2021, 29, 25109–25117. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, K.B.; Anbarasan, P.M. Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon. Chin. Opt. Lett. 2008, 6, 785–787. [Google Scholar] [CrossRef]
- Gao, X.-Z.; Zhao, P.-C.; Sun, X.-F.; Yang, F.; Pan, Y.; Li, Y.; Tu, C.; Wang, H.-T. Highly purified transversely polarized optical needle generated by the hybridly polarized vector optical field with hyperbolic symmetry. J. Opt. 2020, 22, 105604. [Google Scholar] [CrossRef]
- Sundaram, C.M.; Prabakaran, K.; Anbarasan, P.M.; Rajesh, K.B.; Musthafa, A.M. Creation of Super Long Transversely Polarized Optical Needle Using Azimuthally Polarized Multi Gaussian Beam. Chin. Phys. Lett. 2016, 33, 064203. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Meng, C.; Gao, F. Generation of nanosecond cylindrical vector beams in two-mode fiber and its applications of stimulated Raman scattering. Chin. Opt. Lett. 2021, 19, 010603. [Google Scholar] [CrossRef]
- Zhang, G.-B.; Gao, X.-Z.; Sun, X.-F.; Ma, R.; Wang, Y.; Pan, Y. Airy-Gaussian vector beam and its application in generating flexible optical chains. Opt. Express 2023, 31, 30319–30331. [Google Scholar] [CrossRef]
- Zhu, L.; Deng, M.; Lu, B.; Guo, X.; Wang, A. Turbulence-resistant high-capacity free-space optical communications using OAM mode group multiplexing. Opt. Express 2023, 31, 14454–14463. [Google Scholar] [CrossRef]
- Yang, B.; Chen, Y.; Wang, F.; Cai, Y. Trapping two types of Rayleigh particles simultaneously by a focused rotational elliptical Laguerre–Gaussian correlated Schell-model beam. J. Quant. Spectrosc. Radiat. Transfer. 2021, 262, 107518. [Google Scholar] [CrossRef]
- Chen, K.; Li, Z.; Sun, X.; Kang, X.; Wang, G.; Gao, X. Free-space generation of three-dimensional tunable vector optical cages. J. Opt. Soc. Am. A. 2023, 40, 1809–1816. [Google Scholar] [CrossRef]
- Xia, J.; Yang, Z.; Chen, H.; Du, Z.; Lü, Y. Tangentially and radially polarized Nd: YAG hollow lasers with two pairs of axicons. Infrared Phys. Technol. 2020, 107, 103301. [Google Scholar] [CrossRef]
- Morohashi, T.; Srinivasa Rao, A.; Omatsu, T. Direct generation of lower-order cylindrical vector vortex modes from an end-pumped Pr3+: LiYF 4 laser. Appl. Opt. 2023, 62, 9183–9187. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, K.; Chu, S.-C. Microchip solid-state cylindrical vector lasers with orthogonally polarized dual laser-diode end pumping. Opt Lett. 2013, 38, 1434–1436. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.; Voss, A.; Vogel, M.M.; Graf, T. Multilayer polarizing grating mirror used for the generation of radial polarization in Yb: YAG thin-disk lasers. Opt Lett. 2007, 32, 3272–3274. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xie, Z.; Li, G.; Ou, K.; Yu, F.; He, H.; Wang, H.; Yuan, X. All-dielectric metasurface for fully resolving arbitrary beams on a higher-order Poincaré sphere. Photonics Res. 2021, 9, 331–343. [Google Scholar] [CrossRef]
- Wang, D.; Liu, F.; Liu, T.; Sun, S.; He, Q.; Zhou, L. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci. Appl. 2021, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ma, Z.; Zhao, W.; Zhao, J.; Liu, J.; Jing, Q.; Dou, J.; Li, B. Controlled generation of mode-switchable nanosecond pulsed vector vortex beams from a Q-switched fiber laser. Opt. Express 2022, 30, 33195–33207. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, J.; Zhong, Y.; Ren, R.; Lu, Y.; Wan, H.; Wang, J.; Ding, J. Focus modulation of cylindrical vector beams through negative-index grating lenses. Opt. Commun. 2016, 372, 245–249. [Google Scholar] [CrossRef]
- Liang, Y.; Yan, S.; Yao, B.; Lei, M.; Min, J.; Yu, X. Generation of cylindrical vector beams based on common-path interferometer with a vortex phase plate. Opt. Eng. 2016, 55, 046117. [Google Scholar] [CrossRef]
- Geng, J.; Fang, X.; Zhang, L.; Yao, G.; Xu, L.; Liu, F.; Tang, W.; Shi, L.; Qiu, M. Controllable generation of large-scale highly regular gratings on Si films. J. Light Adv. Manuf. 2021, 2, 274–282. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, S.; Wang, S.; Zhang, J.; Tang, C.; Zuo, H.; Gao, F.; Fan, F.; Zhang, Q.; Xu, Q. Fully continuous spiral phase plate for ultraintense optical vortices. Opt. Lett. 2023, 48, 2760–2763. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Xue, J.; Meng, Z. Coaxial multi-ring optical vortex generation based on compound spiral phase plates. Laser Phys. 2022, 32, 035402. [Google Scholar] [CrossRef]
- Guo, L.; Feng, Z.; Fu, Y.; Min, C. Generation of vector beams array with a single spatial light modulator. Opt. Commun. 2021, 490, 126915. [Google Scholar] [CrossRef]
- Qian, B.; Zeng, T.; Chen, Z.; Ding, J. Generation of vector beams using a Wollaston prism and a spatial light modulator. Optik 2017, 148, 312–318. [Google Scholar] [CrossRef]
- Liu, S.; Qi, S.; Zhang, Y.; Li, P.; Wu, D.; Han, L.; Zhao, J. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photonics Res. 2018, 6, 228–233. [Google Scholar] [CrossRef]
- Rosales-Guzmán, C.; Bhebhe, N.; Forbes, A. Simultaneous generation of multiple vector beams on a single SLM. Opt. Express 2017, 25, 25697–25706. [Google Scholar] [CrossRef]
- Kumar, P.; Pal, S.K.; Nishchal, N.K.; Senthilkumaran, P. Non-interferometric technique to realize vector beams embedded with polarization singularities. J. Opt. Soc. Am. A 2020, 37, 1043–1052. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Gao, F.; Fu, Q.; Zhou, X.; Xie, Y.; Zhang, B.; Kumar, S. Multi-Mode Vector Light Field Generation Using Modified Off-Axis Interferometric Holography and Liquid Crystal Spatial Light Modulators. Photonics 2024, 11, 33. https://doi.org/10.3390/photonics11010033
Zhu W, Gao F, Fu Q, Zhou X, Xie Y, Zhang B, Kumar S. Multi-Mode Vector Light Field Generation Using Modified Off-Axis Interferometric Holography and Liquid Crystal Spatial Light Modulators. Photonics. 2024; 11(1):33. https://doi.org/10.3390/photonics11010033
Chicago/Turabian StyleZhu, Wenxu, Feilong Gao, Qianqian Fu, Xinlong Zhou, Yiyan Xie, Bingyuan Zhang, and Santosh Kumar. 2024. "Multi-Mode Vector Light Field Generation Using Modified Off-Axis Interferometric Holography and Liquid Crystal Spatial Light Modulators" Photonics 11, no. 1: 33. https://doi.org/10.3390/photonics11010033
APA StyleZhu, W., Gao, F., Fu, Q., Zhou, X., Xie, Y., Zhang, B., & Kumar, S. (2024). Multi-Mode Vector Light Field Generation Using Modified Off-Axis Interferometric Holography and Liquid Crystal Spatial Light Modulators. Photonics, 11(1), 33. https://doi.org/10.3390/photonics11010033