Multi-Color Phosphor-Converted Wide Spectrum LED Light Source for Simultaneous Illumination and Visible Light Communication
Abstract
:1. Introduction
2. Theoretical Background
3. Experimental Details and Results for Phosphor-Converted White Light Systems
4. Experimental Details and Results for VLC Using Designed Lamp
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, F. Diode laser-excited phosphor-converted light sources: A review. Opt. Eng. 2022, 61, 60901. [Google Scholar] [CrossRef]
- Aquino, F.; Jadwisienczak, W.M.; Rahman, F. Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources. Appl. Opt. 2017, 56, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Al-Waisawy, S.; Jadwisienczak, W.M.; Wright, J.T.; Pendrill, D.; Rahman, F. Laser excitation of red, green, blue and trichromatic white rare-earth phosphors for solid-state lighting applications. J. Lumin. 2016, 169, 196–203. [Google Scholar] [CrossRef]
- Mills, A. Phosphors development for LED lighting. III-Vs Rev. 2005, 18, 32–34. [Google Scholar] [CrossRef]
- Peng, X.; Li, S.; Liu, Z.; Yao, X.; Xie, R.; Huang, Z.; Liu, X. Phosphor Ceramics for High-power Solid-state Lighting. J. Inorg. Mater. 2021, 36, 807–819. [Google Scholar] [CrossRef]
- George, N.C.; Denault, K.A.; Seshadri, R. Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 2013, 43, 481–501. [Google Scholar] [CrossRef]
- Liang, C.; Li, J.; Liu, S.; Yang, F.; Dong, Y.; Song, J.; Zhang, X.-P.; Ding, W. Integrated Sensing, Lighting and Communication Based on Visible Light Communication: A Review. Digit. Signal Process 2024, 145, 104340. [Google Scholar] [CrossRef]
- Kim, B.-G.; Son, M.-H.; Kim, S.-M. Experimental demonstration of micro LED to micro LED visible light communication. ICT Express 2023, 10, 71–76. [Google Scholar] [CrossRef]
- Leba, M.; Riurean, S.; Lonica, A. LiFi—The path to a new way of communication. In Proceedings of the 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), Lisbon, Portugal, 21–24 June 2017; pp. 1–6. Available online: https://api.semanticscholar.org/CorpusID:24123787 (accessed on 20 September 2024).
- Haas, H.; Yin, L.; Wang, Y.; Chen, C. What is lifi? J. Light Technol. 2015, 34, 1533–1544. [Google Scholar] [CrossRef]
- Jargus, J.; Tomis, M.; Baros, J.; Danys, L.; Jaros, R.; Martinek, R.; Vasinek, V.; Nedoma, J. Measurement of the Effect of Luminescent Layer Parameters on Light and Communication Properties. IEEE Trans. Instrum. Meas. 2023, 72, 5500316. [Google Scholar] [CrossRef]
- Ji, R.N.; Wang, S.W.; Liu, Q.Q.; Lu, W. High-Speed Visible Light Communications: Enabling Technologies and State of the Art. Appl. Sci. 2018, 8, 589. [Google Scholar] [CrossRef]
- Zhao, M.; Liao, H.; Molokeev, M.S.; Zhou, Y.; Zhang, Q.; Liu, Q.; Xia, Z. Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition. Light Sci. Appl. 2019, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.N.; Kim, K.D.; Anoop, G.; Kim, G.S.; Yoo, J.S. Design of highly efficient phosphor-converted white light-emitting diodes with color rendering indices (R 1–R 15) 95 for artificial lighting. Sci. Rep. 2019, 9, 16848. [Google Scholar] [CrossRef]
- Fu, X.; Feng, D.; Jiang, X.; Wu, T. The Effect of Correlated Color Temperature and Illumination Level of LED Lighting on Visual Comfort during Sustained Attention Activities. Sustainability 2023, 15, 3826. [Google Scholar] [CrossRef]
- Hsieh, Y.-F.; Ou-Yang, M.; Huang, T.-W.; Lee, C.-C. Determination of optimal converting point of color temperature conversion complied with ANSI C78. 377 for indoor solid-state lighting and display applications. Opt. Express 2012, 20, 20059–20070. [Google Scholar] [CrossRef] [PubMed]
- Karadza, B.; Van Avermaet, H.; Mingabudinova, L.; Hens, Z.; Meuret, Y. Efficient, high-CRI white LEDs by combining traditional phosphors with cadmium-free InP/ZnSe red quantum dots. Photon- Res. 2022, 10, 155–165. [Google Scholar] [CrossRef]
- Mukae, H.; Sato, M. The Effect of Color Temperature of Lighting Sources on the Autonomic Nervous Functions. Ann. Physiol. Anthropol. 1992, 11, 533–538. [Google Scholar] [CrossRef]
- Zhu, S.; Qiu, P.; Shan, X.; Lin, R.; Wang, Z.; Jin, Z.; Cui, X.; Zhang, G.; Tian, P. High-speed long-distance visible light communication based on multicolor series connection micro-LEDs and wavelength division multiplexing. Photon- Res. 2022, 10, 1892–1899. [Google Scholar] [CrossRef]
- Minotto, A.; Haigh, P.A.; Łukasiewicz, G.; Lunedei, E.; Gryko, D.T.; Darwazeh, I.; Cacialli, F. Visible light communication with efficient far-red/near-infrared polymer light-emitting diodes. Light Sci. Appl. 2020, 9, 70. [Google Scholar] [CrossRef]
- Vitasek, J.; Jargus, J.; Stratil, T.; Latal, J.; Kolar, J. Illumination and communication characteristics of white light created by laser excitation of YAG:Ce phosphor powders. Opt. Mater. 2018, 83, 131–137. [Google Scholar] [CrossRef]
- Vitasek, J.; Jargus, J.; Latal, J.; Stratil, T.; Wilček, Z. Illumination and Communication Characteristics of YAG:Ce Phosphor Powders. In Proceedings of the 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Jargus, J.; Vitasek, J.; Nedoma, J.; Vasinek, V.; Martinek, R. Effect of Selected Luminescent Layers on CCT, CRI, and Response Times. Materials 2019, 12, 2095. [Google Scholar] [CrossRef]
- Long, Z.; Long, Z. Optical Wireless Systems Channel Modelling. J. Comput. Commun. 2022, 10, 66–85. [Google Scholar] [CrossRef]
- Zhang, W.; Shao, Y.; Zhu, Y.; Shao, Y.; Tian, C.; He, C. Multi-color luminescence of Sm3+-doped Na2YMg2V3O12 phosphor potentially applicable in white-LEDs. Luminescence 2023, 38, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Liu, Y.; Cao, M.; Zhu, M.; Chen, R.; Li, H. Multi-color carbon dots from cis-butenedioic acid and urea and highly luminescent carbon dots@ Ca (OH) 2 hybrid phosphors with excellent thermal stability for white light-emitting diodes. J. Lumin. 2021, 237, 118202. [Google Scholar] [CrossRef]
- Ying, S.-P.; Fu, H.-K.; Hsieh, H.-H.; Hsieh, K.-Y. Color design model of high color rendering index white-light LED module. Appl. Opt. 2017, 56, 4045–4051. [Google Scholar] [CrossRef] [PubMed]
- Choi, S. New Type of White-light LED Lighting for Illumination and Optical Wireless Communication under Obstacles. J. Opt. Soc. Korea 2012, 16, 203–209. [Google Scholar] [CrossRef]
- Ke, X.; Wang, X.; Qin, H.; Liang, J. Experimental Study on Chromaticity Control in Visible Light Communication Systems. Photonics 2023, 10, 1013. [Google Scholar] [CrossRef]
- Onwukaeme, C.; Lee, B.; Ryu, H.-Y. Investigation into the stability condition of correlated color temperature of white illumination sources based on trichromatic light-emitting diodes. Displays 2023, 76, 102358. [Google Scholar] [CrossRef]
- Henniger, H.; Wilfert, O. An Introduction to Free-space Optical Communications. Radioengineering 2010, 19, 203. [Google Scholar]
- Yu, X.; Sah, S.P.; Rashtian, H.; Mirabbasi, S.; Pande, P.P.; Heo, D. A 1.2-pJ/bit 16-Gb/s 60-GHz OOK transmitter in 65-nm CMOS for wireless network-on-chip. IEEE Trans. Microw. Theory Tech. 2014, 62, 2357–2369. [Google Scholar] [CrossRef]
- Proakis, J.G. Intersymbol Interference in Digital Communication Systems. Wiley Encycl. Telecommun. 2003. [Google Scholar] [CrossRef]
- Bensky, A. Short-Range Wireless Communication, 3rd ed.; Elsevier Science: Amsterdam, The Netherland, 2019; Available online: https://books.google.co.in/books?id=TtCmDwAAQBAJ (accessed on 20 September 2024).
- Padmaja, C.; Malleswari, D.B.L. Review: Fading Channels and its Mitigation Techniques. In Proceedings of the Third National Conference on Latest Trends in Signal Processing, VLSI and Embedded Systems, Palakkad, India, 21–22 February 2014; pp. 25–28. [Google Scholar]
- Debaenst, W.; Feys, A.; CuiÃ, I.; GarcÃ, M.; Verhaevert, J. RMS Delay Spread vs. Coherence Bandwidth from 5G Indoor Radio Channel Measurements at 3.5 GHz Band. Sensors 2020, 20, 750. [Google Scholar] [CrossRef] [PubMed]
- Gallager, R.G. Principles of Digital Communication; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Kharraz, O.; Forsyth, D. PIN and APD photodetector efficiencies in the longer wavelength range 1300–1550 nm. Optik 2013, 124, 2574–2576. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Chen, R.; Sharafudeen, K.; Zhou, S.; Gecevicius, M.; Wang, H.; Dong, G.; Wu, Y.; Qin, X.; et al. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence. NPG Asia Mater. 2015, 7, e180. [Google Scholar] [CrossRef]
- Soliman, G. The Accuracy of the Gaussian Tail and Dual Dirac Model in Jitter Histogram and Probability Density Functions. IEEE Trans. Electromagn. Compat. 2022, 64, 2207–2217. [Google Scholar] [CrossRef]
- Balestrieri, E.; Picariello, F.; Rapuano, S.; Tudosa, I. Review on jitter terminology and definitions. Measurement 2019, 145, 264–273. [Google Scholar] [CrossRef]
- Maxim Integrated. Jitter in Digital Communication Systems. Part 1, Application Note HFAN-4.0.3 (Rev.1, 04/08). Available online: https://pdfserv.maximintegrated.com/en/an/AN794.pdf (accessed on 20 September 2024).
- Sridhar, A.; Instruments, G.A.-T. Time-Domain Jitter Measurement Considerations for Low-Noise Oscillators. AyalaTexas Instruments, Application Report. 2015. Available online: https://www.ti.com.cn/cn/lit/an/snaa285/snaa285.pdf (accessed on 12 September 2024).
- Ghiasi, A. InfiniBand—The Interconnect from Backplane to Fiber. In Fiber Optic Data Communication; Academic Press: Cambridge, MA, USA, 2002; pp. 321–351. [Google Scholar] [CrossRef]
- Clark, A.P. Principles of Digital Data Transmission; Halsted Press: New York, NY, USA, 1976; Available online: https://api.semanticscholar.org/CorpusID:58506489 (accessed on 20 September 2024).
- Vitasek, J.; Jargus, J.; Hejduk, S.; Stratil, T.; Latal, J.; Vašinek, V. Phosphor Decay Measurement and Its Influence on Communication Properties. In Proceedings of the 2017 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, 2–6 July 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Schakel, M.; Banerjee, K.; Bergen, T.; Blattner, P.; Bouroussis, C.; Dekker, P.; Klej, A.; Li, C.; Ootake, H.; Reiners, T.; et al. Guidance on the Measurement of Temporal Light Modulation of Light Sources and Lighting Systems. 2021. Available online: https://api.semanticscholar.org/CorpusID:267407606 (accessed on 20 September 2024).
- Bao, H.; Lin, H.; Zhang, D.; Hong, R.; Tao, C.; Han, Z.; Yin, X.; Pan, Y.; Zhou, S.; Zhang, Z.J.; et al. SrAlSiN3: Eu2+ containing phosphor-in-glass: A color converter for solid state laser lighting. Opt. Mater. 2022, 126, 112169. [Google Scholar] [CrossRef]
- Liu, H.; Liang, H.; Zhang, W.; Zeng, Q.; Wen, D. Improving the thermal stability and luminescent efficiency of (Ba, Sr) 3SiO5: Eu2+ phosphors by structure, bandgap engineering and soft chemistry synthesis method. Chem. Eng. J. 2021, 410, 128367. [Google Scholar] [CrossRef]
- Denault, K.A.; Brgoch, J.; Gaultois, M.W.; Mikhailovsky, A.; Petry, R.; Winkler, H.; DenBaars, S.P.; Seshadri, R. Consequences of optimal bond valence on structural rigidity and improved luminescence properties in SrxBa2-xSiO4:Eu 2+ orthosilicate phosphors. Chem. Mater. 2014, 26, 2275–2282. [Google Scholar] [CrossRef]
- Rahman, F.; George, A.F. Temporal Luminescence of Broadband Light-Emitting Diodes and Their Use for Generating Customizable White Light. LEUKOS- J. Illum. Eng. Soc. N. Am. 2020, 16, 303–314. [Google Scholar] [CrossRef]
- He, C.; Chen, C. A Review of Advanced Transceiver Technologies in Visible Light Communications. Photonics 2023, 10, 648. [Google Scholar] [CrossRef]
- Singh, H.; Miglani, R.; Mittal, N.; Gaba, G.S.; Masud, M.; Aljahdali, S. Design and Analysis of Commercially Viable Free-Space Optical Communication Link for Diverse Beam Divergence Profiles. Front. Phys. 2021, 9, 778734. [Google Scholar] [CrossRef]
- Grami, A. Signals, Systems, and Spectral Analysis. In Introduction to Digital Communications; Academic Press: Cambridge, MA, USA, 2016; pp. 41–150. [Google Scholar] [CrossRef]
- S153P, Silicon PIN Photodiode Rev.2. 1999. Available online: https://pdf.dzsc.com/S15/S153P.pdf (accessed on 20 September 2024).
- MCPCB COB 3W & 5W LED VER.A.3. Available online: https://www.optosupply.com/uppic/2016822878666.pdf (accessed on 20 September 2024).
- Transimpedance amplifier circuit: Application Report SBOA268A. 2017. Available online: https://www.ti.com/lit/an/sboa268a/sboa268a.pdf?ts=1727005815355&ref_url=https%253A%252F%252Fwww.google.com%252F (accessed on 20 September 2024).
- Hancock, J. Jitter—Understanding it, measuring it, eliminating it part 1: Jitter fundamentals. High Freq. Electron. 2004, 4, 44–50. [Google Scholar]
- Gripeos, P.J.; Nistazakis, H.E.; Aidinis, K.; Kriempardis, D.; Tombras, G.S. Performance investigation of FSO communication systems with chromatic dispersion, propagation losses and truncated normal modeled time jitter. Opt. Commun. 2023, 532, 129218. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Hao, Z.; Luo, Y.; Sun, C.; Xiong, B.; Han, Y.; Wang, J.; Li, H.; Gan, L.; et al. Bandwidth Analysis of High-Speed InGaN Micro-LEDs by an Equivalent Circuit Model. IEEE Electron Device Lett. 2023, 44, 785–788. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, Z.; Huang, H.; Sun, H. Influence of Current Density and Capacitance on the Bandwidth of VLC LED. IEEE Photonics Technol. Lett. 2018, 30, 773–776. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, M.; Tan, L.; Shi, W.; Zhou, Q. Study on Modulation Bandwidth and Light Extraction Efficiency of Flip-Chip Light-Emitting Diode with Photonic Crystals. Micromachines 2019, 10, 767. [Google Scholar] [CrossRef] [PubMed]
- Chow, Y.C.; Lynsky, C.; Wu, F.; Nakamura, S.; DenBaars, S.P.; Weisbuch, C.; Speck, J.S. Reduction of efficiency droop in c-plane InGaN/GaN light-emitting diodes using a thick single quantum well with doped barriers. Appl. Phys. Lett. 2021, 119, 221102. [Google Scholar] [CrossRef]
- Yin, P.; Zhi, T.; Tao, T.; Liu, X. Study on Modulation Bandwidth of GaN-Based Micro-Light-Emitting Diodes by Adjusting Quantum Well Structure. Nanomaterials 2022, 12, 3818. [Google Scholar] [CrossRef]
- Sabui, D.; Chatterjee, S.; Prakash, A.; Roy, B.; Khan, G.S. Design of an off-axis freeform diversity receiver to improve SINR performance of a multi-cell VLC system. Opt. Commun. 2022, 510, 127937. [Google Scholar] [CrossRef]
Evaluation Parameters | White LED | Designed Lamp |
---|---|---|
3 dB bandwidth of a signal | 987 Hz | 994.6 Hz |
Rise Time (avg) | 41 µs | 28 µs |
Q factor | 55 | 60 |
Extinction Ratio | 22.64 dB | 23.3 dB |
SNR | 64.05 dB | 61.8 dB |
Deterministic Jitter (DJ, peak to peak) | 68 µs | 41 µs |
Random Jitter (RJ) | 708 ns | 1.1 µs |
Total Jitter (TJ) | 78 µs | 56 µs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soni, A.; Pulikkool, L.; Mulaveesala, R.; Dubey, S.K.; Mehta, D.S. Multi-Color Phosphor-Converted Wide Spectrum LED Light Source for Simultaneous Illumination and Visible Light Communication. Photonics 2024, 11, 914. https://doi.org/10.3390/photonics11100914
Soni A, Pulikkool L, Mulaveesala R, Dubey SK, Mehta DS. Multi-Color Phosphor-Converted Wide Spectrum LED Light Source for Simultaneous Illumination and Visible Light Communication. Photonics. 2024; 11(10):914. https://doi.org/10.3390/photonics11100914
Chicago/Turabian StyleSoni, Aayushi, Linthish Pulikkool, Ravibabu Mulaveesala, Satish Kumar Dubey, and Dalip Singh Mehta. 2024. "Multi-Color Phosphor-Converted Wide Spectrum LED Light Source for Simultaneous Illumination and Visible Light Communication" Photonics 11, no. 10: 914. https://doi.org/10.3390/photonics11100914
APA StyleSoni, A., Pulikkool, L., Mulaveesala, R., Dubey, S. K., & Mehta, D. S. (2024). Multi-Color Phosphor-Converted Wide Spectrum LED Light Source for Simultaneous Illumination and Visible Light Communication. Photonics, 11(10), 914. https://doi.org/10.3390/photonics11100914