Effect of Er:YAG Laser-Activated Irrigation with Side-Firing Spiral Endo Tip on Dentin Mineral Composition of Tooth Root Canals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tooth Preparation
2.2. Laser Specifications
- Group A: No treatment (control).
- Group B: Exposed simultaneously to Er:YAG laser–Endo tip and irrigation with 10 mL of 17% EDTA solution for 60 s.
- Group C: Exposed simultaneously to Er:YAG laser–Endo tip and 4 times irrigation with 1 mL of 17% EDTA solution for 15 s each time.
- Group D: Exposed simultaneously to Er:YAG laser–Endo tip and irrigation with 10 mL of 17% EDTA solution for 60 s, followed by irrigation with 10 mL of 2.5% NaOCl solution for 60 s.
- Group E: Exposed simultaneously to Er:YAG laser–Endo tip and 4 times irrigation with 1 mL of 17% EDTA solution for 15 s each time, followed by irrigation with 10 mL of 2.5% NaOCl solution for 60 s.
- Group F: Exposed simultaneously to Er:YAG laser–Endo tip and irrigation with 10 mL of 2.5% NaOCl solution for 60 s.
2.3. Microanalysis of Surface Element Distribution by Energy X-Ray Spectroscopy (EDS)
2.4. Statistical Analysis
3. Results
Surface Mineral Analysis
Post Hoc Comparisons of the Different Treatments for Each Mineral a | |||||||
---|---|---|---|---|---|---|---|
Treatment Groups | Mean Differences | SE | t | Cohen’s d | ptukey | Significance | |
Calcium | |||||||
A | B | 14.061 | 1.237 | 11.371 | 2.936 | <0.001 | *** |
C | 11.523 | 1.237 | 9.318 | 2.406 | <0.001 | *** | |
D | −3.441 | 1.237 | −2.783 | −0.719 | 0.328 | ||
E | 2.002 | 1.237 | 1.619 | 0.418 | 0.979 | ||
F | −3 | 1.636 | −1.834 | −0.626 | 0.933 | ||
B | C | −2.538 | 1.237 | −2.053 | −0.53 | 0.841 | |
D | −17.502 | 1.237 | −14.15 | −3.654 | <0.001 | *** | |
E | −12.059 | 1.237 | −9.752 | −2.518 | <0.001 | *** | |
F | −17.061 | 1.636 | −10.43 | −3.562 | <0.001 | *** | |
C | D | −14.964 | 1.237 | −12.1 | −3.124 | <0.001 | *** |
E | −9.521 | 1.237 | −7.699 | −1.988 | <0.001 | *** | |
F | −14.522 | 1.636 | −8.877 | −3.032 | <0.001 | *** | |
D | E | 5.443 | 1.237 | 4.402 | 1.137 | 0.002 | ** |
F | 0.442 | 1.636 | 0.27 | 0.092 | 1 | ||
E | F | −5.002 | 1.636 | −3.057 | −1.044 | 0.178 | |
Oxygen | |||||||
A | B | 0.147 | 1.237 | 0.119 | 0.031 | 1 | |
C | 3.47 | 1.237 | 2.806 | 0.724 | 0.313 | ||
D | −3.156 | 1.237 | −2.552 | −0.659 | 0.492 | ||
E | −2.879 | 1.237 | −2.328 | −0.601 | 0.663 | ||
F | −2.072 | 1.636 | −1.267 | −0.433 | 0.999 | ||
B | C | 3.322 | 1.237 | 2.687 | 0.694 | 0.393 | |
D | −3.303 | 1.237 | −2.671 | −0.69 | 0.404 | ||
E | −3.026 | 1.237 | −2.447 | −0.632 | 0.572 | ||
F | −2.22 | 1.636 | −1.357 | −0.463 | 0.997 | ||
C | D | −6.626 | 1.237 | −5.358 | −1.383 | <0.001 | *** |
E | −6.348 | 1.237 | −5.134 | −1.326 | <0.001 | *** | |
F | −5.542 | 1.636 | −3.388 | −1.157 | 0.072 | ||
D | E | 0.277 | 1.237 | 0.224 | 0.058 | 1 | |
F | 1.084 | 1.636 | 0.662 | 0.226 | 1 | ||
E | F | 0.806 | 1.636 | 0.493 | 0.168 | 1 | |
Phosphate | |||||||
A | B | 7.043 | 1.237 | 5.696 | 1.471 | <0.001 | *** |
C | 4.808 | 1.237 | 3.888 | 1.004 | 0.014 | * | |
D | −2.777 | 1.237 | −2.246 | −0.58 | 0.722 | ||
E | 0.679 | 1.237 | 0.549 | 0.142 | 1 | ||
F | −4.621 | 1.636 | −2.825 | −0.965 | 0.301 | ||
B | C | −2.236 | 1.237 | −1.808 | −0.467 | 0.941 | |
D | −9.82 | 1.237 | −7.941 | −2.05 | <0.001 | *** | |
E | −6.365 | 1.237 | −5.147 | −1.329 | <0.001 | *** | |
F | −11.664 | 1.636 | −7.13 | −2.435 | <0.001 | *** | |
C | D | −7.585 | 1.237 | −6.133 | −1.584 | <0.001 | *** |
E | −4.129 | 1.237 | −3.339 | −0.862 | 0.084 | ||
F | −9.429 | 1.636 | −5.764 | −1.969 | <0.001 | *** | |
D | E | 3.456 | 1.237 | 2.794 | 0.722 | 0.32 | |
F | −1.844 | 1.636 | −1.127 | −0.385 | 1 | ||
E | F | −5.3 | 1.636 | −3.24 | −1.107 | 0.111 |
Cases | Sum of Squares | df | Mean Square | F | ptukey | η2 |
---|---|---|---|---|---|---|
Group | 8280.819 | 5 | 1656.164 | 72.202 | <0.001 | 0.152 |
Mineral | 32,810.077 | 2 | 16,405.038 | 715.189 | <0.001 | 0.604 |
Group × Mineral | 2530.629 | 10 | 253.063 | 11.032 | <0.001 | 0.047 |
Residuals | 10,735.004 | 468 | 22.938 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peters, O.A.; Peters, C.I. Cleaning and shaping of the root canal system. Cohen’s Pathw. Pulp 2020, 12, 236–303. [Google Scholar]
- Versiani, M.A.; Alves, F.R.; Andrade-Junior, C.V.; Marceliano-Alves, M.F.; Provenzano, J.C.; Rôças, I.N.; Sousa-Neto, M.D.; Siqueira, J.F., Jr. Micro-CT evaluation of the efficacy of hard-tissue removal from the root canal and isthmus area by positive and negative pressure irrigation systems. Int. Endod. J. 2016, 49, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr.; Rôças, I.N. Persistent and secondary endodontic infections. In Treatment of Endodontic Infections, 2nd ed.; Quinessence Publishing, Quintessenz Verlags-GnbH: Berlin, Germany, 2022; Volume 2013, ISBN 978-978-86867-86862. [Google Scholar]
- Neelakantan, P.; Romero, M.; Vera, J.; Daood, U.; Khan, A.U.; Yan, A.; Cheung, G.S.P. Biofilms in endodontics-Current status and future directions. Int. J. Mol. Sci. 2017, 18, 1748. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.C.; Dijkstra, R.J.B.; Petridis, X.; Sharma, P.K.; van de Meer, W.J.; van der Sluis, L.W.M.; de Andrade, F.B. Chemical and mechanical influence of root canal irrigation on biofilm removal from lateral morphological features of simulated root canals, dentine discs and dentinal tubules. Int. Endod. J. 2021, 54, 112–129. [Google Scholar] [CrossRef]
- Ruksakiet, K.; Hanák, L.; Farkas, N.; Hegyi, P.; Sadaeng, W.; Czumbel, L.M.; Sang-Ngoen, T.; Garami, A.; Mikó, A.; Varga, G.; et al. Antimicrobial Efficacy of Chlorhexidine and Sodium Hypochlorite in Root Canal Disinfection: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Endod. 2020, 46, 1032–1041.e1037; [Google Scholar] [CrossRef]
- Gonçalves, L.S.; Rodrigues, R.C.; Andrade Junior, C.V.; Soares, R.G.; Vettore, M.V. The Effect of Sodium Hypochlorite and Chlorhexidine as Irrigant Solutions for Root Canal Disinfection: A Systematic Review of Clinical Trials. J. Endod. 2016, 42, 527–532. [Google Scholar] [CrossRef]
- Wong, J.; Manoil, D.; Näsman, P.; Belibasakis, G.N.; Neelakantan, P. Microbiological aspects of root canal infections and disinfection strategies: An update review on the current knowledge and challenges. Front. Oral Health 2021, 2, 672887. [Google Scholar] [CrossRef]
- Siqueira, J.F., Jr.; Rôças, I.N. Optimising single-visit disinfection with supplementary approaches: A quest for predictability. Aust. Endod. J. 2011, 37, 92–98. [Google Scholar] [CrossRef]
- Tejada, S.; Baca, P.; Ferrer-Luque, C.M.; Ruiz-Linares, M.; Valderrama, M.J.; Arias-Moliz, M.T. Influence of dentine debris and organic tissue on the properties of sodium hypochlorite solutions. Int. Endod. J. 2019, 52, 114–122. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Shalavi, S.; Yaripour, S.; Kinoshita, J.I.; Manabe, A.; Kobayashi, M.; Giardino, L.; Palazzi, F.; Sharifi, F.; Jafarzadeh, H. Smear layer removing ability of root canal irrigation solutions: A review. J. Contemp. Dent. Pract. 2019, 20, 395–402. [Google Scholar] [CrossRef]
- Widbiller, M.; Rosendahl, A.; Schlichting, R.; Schuller, C.; Lingl, B.; Hiller, K.A.; Buchalla, W.; Galler, K.M. Impact of endodontic irrigant activation on smear layer removal and surface disintegration of root canal dentine in vitro. Healthcare 2023, 11, 376. [Google Scholar] [CrossRef] [PubMed]
- Wigler, R.; Herteanu, M.; Wilchfort, Y.; Kfir, A. Efficacy of different irrigant activation systems on debris and smear layer removal: A scanning electron microscopy evaluation. Int. J. Dent. 2023, 2023, 9933524. [Google Scholar] [CrossRef] [PubMed]
- Khaord, P.; Amin, A.; Shah, M.B.; Uthappa, R.; Raj, N.; Kachalia, T.; Kharod, H. Effectiveness of different irrigation techniques on smear layer removal in apical thirds of mesial root canals of permanent mandibular first molar: A scanning electron microscopic study. J. Conserv. Dent. 2015, 18, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Cîmpean, S.I.; Pop-Ciutrila, I.S.; Matei, S.R.; Colosi, I.A.; Costache, C.; Nicula, G.Z.; Badea, I.C.; Colceriu Burtea, L. Effectiveness of different final irrigation procedures on Enterococcus faecalis infected root canals: An in vitro evaluation. Materials 2022, 15, 6688. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.; Kim, D.; Liu, Y.; Karabucak, B.; Koo, H. Novel Endodontic disinfection approach using catalytic nanoparticles. J. Endod. 2018, 44, 806–812. [Google Scholar] [CrossRef]
- Pourhajibagher, M.; Chiniforush, N.; Shahabi, S.; Palizvani, M.; Bahador, A. Antibacterial and antibiofilm efficacy of antimicrobial photodynamic therapy against intracanal Enterococcus faecalis: An in vitro comparative study with traditional endodontic irrigation solutions. J. Dent. 2018, 15, 197–204. [Google Scholar]
- Sahar-Helft, S.; Erez, A.; Shay, B.; Assad, R.; Funk, B.; Polak, D. Enhancing Er:YAG bactericidal effect against Enterococcus faecalis biofilm in vitro. Lasers Med. Sci. 2019, 34, 1717–1721. [Google Scholar] [CrossRef]
- De Moor, R.J.; Meire, M.; Goharkhay, K.; Moritz, A.; Vanobbergen, J. Efficacy of ultrasonic versus laser-activated irrigation to remove artificially placed dentin debris plugs. J. Endod. 2010, 36, 1580–1583. [Google Scholar] [CrossRef]
- Mir, M.; Gutknecht, N.; Poprawe, R.; Vanweersch, L.; Lampert, F. Visualising the procedures in the influence of water on the ablation of dental hard tissue with erbium:yttrium-aluminium-garnet and erbium, chromium:yttrium-scandium-gallium-garnet laser pulses. Lasers Med. Sci. 2009, 24, 365–374. [Google Scholar] [CrossRef]
- Sahar-Helft, S.; Sarp, A.S.; Stabholtz, A.; Gutkin, V.; Redenski, I.; Steinberg, D. Comparison of positive-pressure, passive ultrasonic, and laser-activated irrigations on smear-layer removal from the root canal surface. Photomed. Laser Surg. 2015, 33, 129–135. [Google Scholar] [CrossRef]
- Takeda, F.H.; Harashima, T.; Kimura, Y.; Matsumoto, K. Efficacy of Er:YAG laser irradiation in removing debris and smear layer on root canal walls. J. Endod. 1998, 24, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Stabholz, A.; Sahar-Helft, S.; Moshonov, J. The use of lasers for cleaning and disinfecting of the root canal system. Alpha Omegan 2008, 101, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Polak, D.; Shani-Kdoshim, S.; Alias, M.; Shapira, L.; Stabholz, A. The in vitro efficacy of biofilm removal from titanium surfaces using Er:YAG laser: Comparison of treatment protocols and ablation parameters. J. Periodontol. 2022, 93, 100–109. [Google Scholar] [CrossRef]
- Sebbane, N.; Steinberg, D.; Keinan, D.; Sionov, R.V.; Farber, A.; Sahar-Helft, S. Antibacterial effect of Er:YAG laser irradiation applied by a new side-firing spiral tip on Enterococcus faecalis biofilm in the tooth root canal—An ex vivo study. Appl. Sci. 2022, 12, 12656. [Google Scholar] [CrossRef]
- İlhan, H.; Cakici, E.B.; Cakici, F. The comparative of chitosan and chitosan nanoparticle versus ethylenediaminetetraacetic acid on the smear layer removal: A systematic review and meta-analysis of in vitro study. Microsc. Res. Tech. 2024, 87, 181–190. [Google Scholar] [CrossRef]
- Tartari, T.; Bachmann, L.; Zancan, R.F.; Vivan, R.R.; Duarte, M.A.H.; Bramante, C.M. Analysis of the effects of several decalcifying agents alone and in combination with sodium hypochlorite on the chemical composition of dentine. Int. Endod. J. 2018, 51 (Suppl. S1), e42–e54. [Google Scholar] [CrossRef]
- Tay, F.R.; Gu, L.S.; Schoeffel, G.J.; Wimmer, C.; Susin, L.; Zhang, K.; Arun, S.N.; Kim, J.; Looney, S.W.; Pashley, D.H. Effect of vapor lock on root canal debridement by using a side-vented needle for positive-pressure irrigant delivery. J. Endod. 2010, 36, 745–750. [Google Scholar] [CrossRef]
- Vera, J.; Arias, A.; Romero, M. Effect of maintaining apical patency on irrigant penetration into the apical third of root canals when using passive ultrasonic irrigation: An in vivo study. J. Endod. 2011, 37, 1276–1278. [Google Scholar] [CrossRef]
- Ballal, N.V.; Mala, K.; Bhat, K.S. Evaluation of the effect of maleic acid and ethylenediaminetetraacetic acid on the microhardness and surface roughness of human root canal dentin. J. Endod. 2010, 36, 1385–1388. [Google Scholar] [CrossRef]
- Immich, F.; Cotti, E.; Pirani, C.; Rossi-Fedele, G. What is new in the 2023 European Society of Endodontology S3-level clinical practice guidelines? Int. Endod. J. 2024, 57, 1059–1064. [Google Scholar] [CrossRef]
- Huang, Q.; Li, Z.; Lyu, P.; Zhou, X.; Fan, Y. Current Applications and Future Directions of Lasers in Endodontics: A Narrative Review. Bioengineering 2023, 10, 296. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, S.; Jasuja, P.; Khurana, H.; Gakhar, E.; Singh, H. A comparative evaluation of the efficacy of erbium: Yttrium-aluminum-garnet and diode lasers in smear layer removal and dentin permeability of root canal after biomechanical preparation—A scanning electron microscopy study. J. Indian Soc. Pedod. Prev. Dent. 2020, 38, 64–70. [Google Scholar] [CrossRef]
- Olivi, G.; De Moor, R.; DiVito, E. (Eds.) Lasers in Endodontics: Scientific Background and Clinical Applications, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 109–137. [Google Scholar]
- Gomes, B.P.F.A.; Aveiro, E.; Kishen, A. Irrigants and irrigation activation systems in endodontics. Braz. Dent. J. 2023, 34, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Bordea, I.R.; Hanna, R.; Chiniforush, N.; Grădinaru, E.; Câmpian, R.S.; Sîrbu, A.; Amaroli, A.; Benedicenti, S. Evaluation of the outcome of various laser therapy applications in root canal disinfection: A systematic review. Photodiagn. Photodyn. Ther. 2020, 29, 101611. [Google Scholar] [CrossRef] [PubMed]
- Peeters, H.H.; Suardita, K. Efficacy of smear layer removal at the root tip by using ethylenediaminetetraacetic acid and erbium, chromium: Yttrium, scandium, gallium garnet laser. J. Endod. 2011, 37, 1585–1589. [Google Scholar] [CrossRef]
Cases | Sum of Squares | df | Mean Square | F | ptukey |
---|---|---|---|---|---|
Group | 5.060 | 5 | 1.012 | 27.661 | <0.001 |
Area | 0.118 | 2 | 0.059 | 1.608 | 0.204 |
Group × Area | 0.795 | 10 | 0.079 | 2.172 | 0.023 |
Residuals | 5.268 | 144 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahar-Helft, S.; Farber, A.; Sebbane, N.; Helft, C.; Dakar, R.; Gutkin, V.; Sionov, R.V.; Steinberg, D. Effect of Er:YAG Laser-Activated Irrigation with Side-Firing Spiral Endo Tip on Dentin Mineral Composition of Tooth Root Canals. Photonics 2024, 11, 978. https://doi.org/10.3390/photonics11100978
Sahar-Helft S, Farber A, Sebbane N, Helft C, Dakar R, Gutkin V, Sionov RV, Steinberg D. Effect of Er:YAG Laser-Activated Irrigation with Side-Firing Spiral Endo Tip on Dentin Mineral Composition of Tooth Root Canals. Photonics. 2024; 11(10):978. https://doi.org/10.3390/photonics11100978
Chicago/Turabian StyleSahar-Helft, Sharonit, Adi Farber, Nathanyel Sebbane, Coral Helft, Roni Dakar, Vitaly Gutkin, Ronit Vogt Sionov, and Doron Steinberg. 2024. "Effect of Er:YAG Laser-Activated Irrigation with Side-Firing Spiral Endo Tip on Dentin Mineral Composition of Tooth Root Canals" Photonics 11, no. 10: 978. https://doi.org/10.3390/photonics11100978
APA StyleSahar-Helft, S., Farber, A., Sebbane, N., Helft, C., Dakar, R., Gutkin, V., Sionov, R. V., & Steinberg, D. (2024). Effect of Er:YAG Laser-Activated Irrigation with Side-Firing Spiral Endo Tip on Dentin Mineral Composition of Tooth Root Canals. Photonics, 11(10), 978. https://doi.org/10.3390/photonics11100978