Research on Rate Adaptation of Underwater Optical Communication with Joint Control of Photoelectric Domain
Abstract
1. Introduction
2. System Model
3. Rate-Adaptive Scheme of Joint Control of Photoelectric Domain
3.1. Rate-Adaptive Control of Electrical Domains
3.2. Power-Adaptive Control of Optical Domains
4. Simulation Result Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, S.; Chen, X.; Liu, X.; Zhang, G.; Tian, P. Recent Progress in and Perspectives of Underwater Wireless Optical Communication. Prog. Quantum Electron. 2020, 73, 100274. [Google Scholar] [CrossRef]
- Ali, M.F.; Jayakody, D.N.K.; Li, Y. Recent Trends in Underwater Visible Light Communication (UVLC) Systems. IEEE Access 2022, 10, 22169–22225. [Google Scholar] [CrossRef]
- Kodama, T.; Sanusi, M.A.B.A.; Kobori, F.; Kimura, T.; Inoue, Y.; Jinno, M. Comprehensive Analysis of Time-Domain Hybrid PAM for Data-Rate and Distance Adaptive UWOC System. IEEE Access 2021, 9, 57064–57074. [Google Scholar] [CrossRef]
- Luo, H.; Wang, X.; Bu, F.; Yang, Y.; Ruby, R.; Wu, K. Underwater Real-Time Video Transmission via Wireless Optical Channels with Swarms of AUVs. IEEE Trans. Veh. Technol. 2023, 72, 14688–14703. [Google Scholar] [CrossRef]
- Li, J.; Ye, D.; Fu, K.; Wang, L.; Piao, J.; Li, C.; Wang, Y. Photon-Counting Schemes for MIMO Underwater Wireless Optical Communication with Arrayed PMTs. Appl. Opt. 2022, 61, 403. [Google Scholar] [CrossRef]
- Ning, J.; Gao, G.; Jia Liang, Z.; Peng, H.; Guo, Y. Adaptive Receiver Control for Reliable High-Speed Underwater Wireless Optical Communication with Photomultiplier Tube Receiver. IEEE Photonics J. 2021, 13, 7300107. [Google Scholar] [CrossRef]
- Chen, Y.; Ming, C.; Xie, K.; Gao, S.; Jiang, Q.; Liu, Z.; Yao, H.; Dong, K. All-in-One BPSK/QPSK Switchable Transmission and Reception for Adaptive Free-Space Optical Communication Links. Photonics 2024, 11, 326. [Google Scholar] [CrossRef]
- Costanzo, A.; Loscri, V.; Biagi, M. Adaptive Modulation Control for Visible Light Communication Systems. J. Light Technol. 2021, 39, 2780–2789. [Google Scholar] [CrossRef]
- Wang, J.; Fu, M.; Zheng, B.; Sun, M. A Design of Underwater Wireless Optical Communication System Based on OFDM Technology. In Proceedings of the OCEANS 2022—Chennai, Chennai, India, 21 February 2022; IEEE: New York, NY, USA, 2022; pp. 1–6. [Google Scholar]
- Li, Y.; Jiang, Y.; Chen, X.; Jiang, P.; Li, S.; Hu, Y. Research on Adaptive Transmit Diversity Strategy for Reducing Interference in Underwater Optical Multi-Beam Non-Orthogonal Multiple Access Systems. Photonics 2023, 10, 1152. [Google Scholar] [CrossRef]
- Yu, W.; Jia, H.; Musavian, L. Joint Adaptive M-QAM Modulation and Power Adaptation for a Downlink NOMA Network. IEEE Trans. Commun. 2022, 70, 783–796. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, J.; Chi, N.; Shen, C.; Li, Z. Wavefront Shaping for Multi-User Line-of-Sight and Non-Line-of-Sight Visible Light Communication. Opt. Express 2023, 31, 25359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shu, C. Optimum Constellation Size for Probabilistically Shaped Signals in the Presence of Laser Phase Noise. J. Light Technol. 2022, 40, 947–953. [Google Scholar] [CrossRef]
- Kschischang, F.R.; Pasupathy, S. Optimal Nonuniform Signaling for Gaussian Channels. IEEE Trans. Inf. Theory 1993, 39, 913–929. [Google Scholar] [CrossRef]
- Xing, S.; Hu, F.; Li, G.; Zhang, J.; Chi, N.; He, Z.; Yu, S. Demonstration of Flexible Access in a Rate-Adaptive Visible Light Communication System with Constellation Probabilistic Shaping. Opt. Express 2021, 29, 34441. [Google Scholar] [CrossRef]
- Loureiro, P.A.; Guiomar, F.P.; Monteiro, P.P. 25G+ Distance-Adaptive Visible Light Communications Enabled by Entropy Loading. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023. [Google Scholar]
- Kafizov, A.; Elzanaty, A.; Alouini, M.-S. Probabilistic Shaping-Based Spatial Modulation for Spectral-Efficient VLC. IEEE Trans. Wirel. Commun. 2022, 21, 8259–8275. [Google Scholar] [CrossRef]
- Buchali, F.; Steiner, F.; Bocherer, G.; Schmalen, L.; Schulte, P.; Idler, W. Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration. J. Light Technol. 2016, 34, 1599–1609. [Google Scholar] [CrossRef]
- Smith, R.C.; Baker, K.S. Optical Properties of the Clearest Natural Waters (200–800 Nm). Appl. Opt. 1981, 20, 177. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Xu, Z. A Cost-Efficient Real-Time 25 Mb/s System for LED-UOWC: Design, Channel Coding, FPGA Implementation, and Characterization. J. Light Technol. 2018, 36, 2627–2637. [Google Scholar] [CrossRef]
- Sun, K.; Li, Y.; Han, Z. Research on Underwater Wireless Optical Communication Channel Model and Its Application. Appl. Sci. 2023, 14, 206. [Google Scholar] [CrossRef]
- Dissanayake, S.D.; Armstrong, J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems. J. Light Technol. 2013, 31, 1063–1072. [Google Scholar] [CrossRef]
- Krishnan, K.; Gauni, S.; Manimegalai, C.T.; Malsawmdawngliana, V. Ambient Noise Analysis in Underwater Wireless Communication Using Laser Diode. Opt. Laser Technol. 2019, 114, 135–139. [Google Scholar] [CrossRef]
- Yang, F.; Dong, Y. Joint Probabilistic Shaping and Beamforming Scheme for MISO VLC Systems. IEEE Wirel. Commun. Lett. 2022, 11, 508–512. [Google Scholar] [CrossRef]
- Fehenberger, T.; Lavery, D.; Maher, R.; Alvarado, A.; Bayvel, P.; Hanik, N. Sensitivity Gains by Mismatched Probabilistic Shaping for Optical Communication Systems. IEEE Photonics Technol. Lett. 2016, 28, 786–789. [Google Scholar] [CrossRef]
- Bocherer, G.; Geiger, B.C. Optimal Quantization for Distribution Synthesis. IEEE Trans. Inf. Theory 2016, 62, 6162–6172. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, W.; Huang, N.; Xu, Z. Experimental Saturation Characteristics of PMT from DC to 1 GHz and Adaptive Compensation Algorithm for High-Speed UOWC. In Proceedings of the 2023 15th International Conference on Communication Software and Networks (ICCSN), Shenyang, China, 21 July 2023; IEEE: New York, NY, USA, 2023; pp. 302–306. [Google Scholar]
Ref. | CPS | Optical/Electrical Domain | Modulation Method | Transmit Power | Link Distance | Optimization Objective |
---|---|---|---|---|---|---|
Proposed | Yes | Both | QAM | 80 mW | 7–48 m | Distance; rate |
[3] | No | Electrical | TDHP | 0.5 W | 11–100 m | Distance |
[5] | No | Both | OOK | 10–30 mW | 10 m | Distance |
[6] | No | Optical | OOK | 80 mW | 2 m | Power |
[8] | No | Electrical | PAM/PPM | 4 W | 0.5–6 m | Distance |
[12] | No | Electrical | QAM | - | 0.15–0.3 m | Rate |
[15] | Yes | Electrical | QAM | - | 1–20 m | Rate |
[16] | Yes | Electrical | QAM | - | 0.5–2 m; | Rate |
Parameter | Value/Unit |
---|---|
0.0145 m−1 | |
5° | |
0° | |
0° | |
50 mm | |
50 mm | |
0.1289 | |
0.9500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Qiu, H.; Li, Y. Research on Rate Adaptation of Underwater Optical Communication with Joint Control of Photoelectric Domain. Photonics 2024, 11, 1004. https://doi.org/10.3390/photonics11111004
Chen Y, Qiu H, Li Y. Research on Rate Adaptation of Underwater Optical Communication with Joint Control of Photoelectric Domain. Photonics. 2024; 11(11):1004. https://doi.org/10.3390/photonics11111004
Chicago/Turabian StyleChen, Yu, Hongbing Qiu, and Yanlong Li. 2024. "Research on Rate Adaptation of Underwater Optical Communication with Joint Control of Photoelectric Domain" Photonics 11, no. 11: 1004. https://doi.org/10.3390/photonics11111004
APA StyleChen, Y., Qiu, H., & Li, Y. (2024). Research on Rate Adaptation of Underwater Optical Communication with Joint Control of Photoelectric Domain. Photonics, 11(11), 1004. https://doi.org/10.3390/photonics11111004