Energy Backflow in Unidirectional Monochromatic and Space–Time Waves
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. A (2+1)-Dimensional Unidirectional Monochromatic Wave
3.1.1. A New Unidirectional Wave
3.1.2. Backflow in the Unidirectional (2+1)-Dimensional Wave
3.2. A (2+1)-Dimensional Unidirectional Wave Packet
3.3. A (3+1)-Dimensional Scalar and Vector-Valued “Needle” Pulse
3.4. A (3+1)D Unidirectional Version of the Luminal Propagation-Invariant Space–Time Wavepacket—The Focus Wave Mode (FWM)
4. Conclusions
- The energy backflow is a weak effect and typically constitutes a fraction less than 10% from the forward flow.
- Nevertheless, the velocity of the energy backflow may reach the physical maximum c.
- Non-paraxiality enhances the effect. However, it is not a sufficient condition—e.g., the X-wave can be extremely non-paraxial but still absolutely lacking the backflow.
- The vector nature of a wavefield is by far not always crucial for the appearance of the backflow but generally enhances the effect in comparison with a corresponding scalar-valued wavefield.
- Stronger backflow tends to be located in regions of low energy density and/or in the vicinity of maxima of the forward flow. Reasons for that need further study.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bialynicki-Birula, I.; Bialynicka-Birula, Z.; Augustynowicz, S. Backflow in relativistic wave equations. J. Phys. A Math. Theor. 2022, 55, 255702. [Google Scholar] [CrossRef]
- Bracken, A.J. Probability flow for a free particle: New quantum effects. Phys. Scr. 2021, 96, 045201. [Google Scholar] [CrossRef]
- Barbier, M.; Fewster, C.J.; Goussev, A.; Morozov, G.V.; Srivastava, S.C.L. Comment on ‘Backflow in relativistic wave equations’. J. Phys. A Math. Theor. 2023, 56, 138003. [Google Scholar] [CrossRef]
- Bracken, A.; Melloy, G. Comment on ‘Backflow in relativistic wave equations’. J. Phys. A Math. Theor. 2023, 56, 138002. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Bialynicka-Birula, Z.; Augustynowicz, S. Reply to comments on ‘Backflow in relativistic wave equations’. J. Phys. A Math. Theor. 2023, 56, 138001. [Google Scholar] [CrossRef]
- Katsenelenbaum, B. What is the direction of the Poynting vector? (A methodic note). J. Commun. Technol. Electron. 1997, 42, 119–120. [Google Scholar]
- You, X.L.; Li, C.F. From Poynting vector to new degree of freedom of polarization. arXiv 2020, arXiv:2009.04119. [Google Scholar]
- Saari, P.; Besieris, I. Backward energy flow in simple four-wave electromagnetic fields. Eur. J. Phys. 2021, 42, 055301. [Google Scholar] [CrossRef]
- Ustinov, A.V.; Porfirev, A.P.; Khonina, S.N. Interference Generation of a Reverse Energy Flow with Varying Orbital and Spin Angular Momentum Density. Photonics 2024, 11, 962. [Google Scholar] [CrossRef]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A 1959, 253, 358–379. [Google Scholar]
- Kotlyar, V.; Stafeev, S.; Nalimov, A.; Kovalev, A.; Porfirev, A. Mechanism of formation of an inverse energy flow in a sharp focus. Phys. Rev. A 2020, 101, 033811. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Tang, M.; Li, X. Controlled negative energy flow in the focus of a radial polarized optical beam. Opt. Express 2020, 28, 18607–18615. [Google Scholar] [CrossRef]
- Han, L.; Qi, J.; Gao, C.; Li, F. Controllable reverse energy flow in the focus of tightly focused hybrid vector beams. Opt. Express 2024, 32, 36865–36874. [Google Scholar] [CrossRef]
- Geints, Y.E.; Minin, I.V.; Minin, O.V. Simulation of enhanced optical trapping in a perforated dielectric microsphere amplified by resonant energy backflow. Opt. Commun. 2022, 524, 128779. [Google Scholar] [CrossRef]
- Yuan, G.; Rogers, E.T.; Zheludev, N.I. “Plasmonics” in free space: Observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields. Light. Sci. Appl. 2019, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Lukyanchuk, B.; Wang, Z.; Tribelsky, M.; Ternovsky, V.; Hong, M.; Chong, T. Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies. J. Phys. Conf. Ser. 2007, 59, 234. [Google Scholar] [CrossRef]
- Tribelsky, M.I.; Luk’yanchuk, B.S. Anomalous light scattering by small particles. Phys. Rev. Lett. 2006, 97, 263902. [Google Scholar] [CrossRef]
- Eliezer, Y.; Zacharias, T.; Bahabad, A. Observation of optical backflow. Optica 2020, 7, 72–76. [Google Scholar] [CrossRef]
- Ghosh, B.; Daniel, A.; Gorzkowski, B.; Bekshaev, A.Y.; Lapkiewicz, R.; Bliokh, K.Y. Canonical and Poynting currents in propagation and diffraction of structured light: Tutorial. JOSA B 2024, 41, 1276–1289. [Google Scholar] [CrossRef]
- Turunen, J.; Friberg, A.T. Self-imaging and propagation-invariance in electromagnetic fields. Pure Appl. Opt. 1993, 2, 51. [Google Scholar] [CrossRef]
- Novitsky, A.V.; Novitsky, D.V. Negative propagation of vector Bessel beams. JOSA A 2007, 24, 2844–2849. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.; Bağcı, H. Energy flow characteristics of vector X-waves. Opt. Express 2011, 19, 8526–8532. [Google Scholar] [CrossRef]
- Brittingham, J.N. Focus waves modes in homogeneous Maxwell’s equations: Transverse electric mode. J. Appl. Phys. 1983, 54, 1179–1189. [Google Scholar] [CrossRef]
- Besieris, I.M.; Shaarawi, A.M.; Ziolkowski, R.W. A bidirectional traveling plane wave representation of exact solutions of the scalar wave equation. J. Math. Phys. 1989, 30, 1254–1269. [Google Scholar] [CrossRef]
- Lu, J.Y.; Greenleaf, J.F. Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, 19–31. [Google Scholar] [CrossRef]
- Ziolkowski, R.W.; Besieris, I.M.; Shaarawi, A.M. Aperture realizations of exact solutions to homogeneous-wave equations. JOSA A 1993, 10, 75–87. [Google Scholar] [CrossRef]
- Saari, P.; Reivelt, K. Evidence of X-shaped propagation-invariant localized light waves. Phys. Rev. Lett. 1997, 79, 4135. [Google Scholar] [CrossRef]
- Besieris, J.; Abdel-Rahman, M.; Shaarawi, A.; Chatzipetros, A. Two fundamental representations of localized pulse solutions to the scalar wave equation. J. Electromagn. Waves Appl. 1998, 12, 981–984. [Google Scholar] [CrossRef]
- Salo, J.; Fagerholm, J.; Friberg, A.T.; Salomaa, M. Unified description of nondiffracting X and Y waves. Phys. Rev. E 2000, 62, 4261. [Google Scholar] [CrossRef]
- Grunwald, R.; Kebbel, V.; Griebner, U.; Neumann, U.; Kummrow, A.; Rini, M.; Nibbering, E.; Piché, M.; Rousseau, G.; Fortin, M. Generation and characterization of spatially and temporally localized few-cycle optical wave packets. Phys. Rev. A 2003, 67, 063820. [Google Scholar] [CrossRef]
- Saari, P.; Reivelt, K. Generation and classification of localized waves by Lorentz transformations in Fourier space. Phys. Rev. E 2004, 69, 036612. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, A. Localized light waves: Paraxial and exact solutions of the wave equation (a review). Opt. Spectrosc. 2007, 102, 603–622. [Google Scholar] [CrossRef]
- Yessenov, M.; Bhaduri, B.; Kondakci, H.E.; Abouraddy, A.F. Classification of propagation-invariant space–time wave packets in free space: Theory and experiments. Phys. Rev. A 2019, 99, 023856. [Google Scholar] [CrossRef]
- Reivelt, K.; Saari, P. Experimental demonstration of realizability of optical focus wave modes. Phys. Rev. E 2002, 66, 056611. [Google Scholar] [CrossRef]
- Bowlan, P.; Valtna-Lukner, H.; Lõhmus, M.; Piksarv, P.; Saari, P.; Trebino, R. Measuring the spatiotemporal field of ultrashort Bessel-X pulses. Opt. Lett. 2009, 34, 2276–2278. [Google Scholar] [CrossRef]
- Kondakci, H.E.; Abouraddy, A.F. Diffraction-free space–time light sheets. Nat. Photonics 2017, 11, 733–740. [Google Scholar] [CrossRef]
- Recami, E.; Zamboni-Rached, M.; Hernández-Figueroa, H.E. (Eds.) Localized Waves: A Historical and Scientific Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hernández-Figueroa, H.E.; Zamboni-Rached, M.; Recami, E. (Eds.) Non-Diffracting Waves; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Yessenov, M.; Hall, L.A.; Schepler, K.L.; Abouraddy, A.F. space–time wave packets. Adv. Opt. Photonics 2022, 14, 455–570. [Google Scholar] [CrossRef]
- Saari, P. Reexamination of group velocities of structured light pulses. Phys. Rev. A 2018, 97, 063824. [Google Scholar] [CrossRef]
- Saari, P.; Rebane, O.; Besieris, I. Energy-flow velocities of nondiffracting localized waves. Phys. Rev. A 2019, 100, 013849. [Google Scholar] [CrossRef]
- Zamboni-Rached, M. Unidirectional decomposition method for obtaining exact localized wave solutions totally free of backward components. Phys. Rev. A 2009, 79, 013816. [Google Scholar] [CrossRef]
- So, I.A.; Plachenov, A.B.; Kiselev, A.P. Simple unidirectional finite-energy pulses. Phys. Rev. A 2020, 102, 063529. [Google Scholar] [CrossRef]
- Besieris, I.; Saari, P. Energy backflow in unidirectional spatiotemporally localized wave packets. Phys. Rev. A 2023, 107, 033502. [Google Scholar] [CrossRef]
- Lekner, J. Family of oscillatory electromagnetic pulses. Phys. Rev. A 2023, 108, 063502, Erratum in Phys. Rev. A 2024, 109, 059901. [Google Scholar] [CrossRef]
- Sheppard, C.J.; Saari, P. Lommel pulses: An analytic form for localized waves of the focus wave mode type with bandlimited spectrum. Opt. Express 2008, 16, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK, 1995; p. 288. [Google Scholar]
- Erdelyi, A. Tables of Integral Transforms; McGraw-Hill: New York, NY, USA, 1954; Volume 1. [Google Scholar]
- Lekner, J. Tight focusing of light beams: A set of exact solutions. Proc. R. Soc. A 2016, 472, 20160538. [Google Scholar] [CrossRef]
- Gradshteyn, I.; Ryzhik, I. Table of Integrals, Series, and Products, 6th ed.; Academic Press: New York, NY, USA, 2000. [Google Scholar]
- Parker, K.J.; Alonso, M.A. Longitudinal iso-phase condition and needle pulses. Opt. Express 2016, 24, 28669–28677. [Google Scholar] [CrossRef]
- Grunwald, R.; Bock, M. Needle beams: A review. Adv. Phys. X 2020, 5, 1736950. [Google Scholar] [CrossRef]
- Valtna, H.; Reivelt, K.; Saari, P. Methods for generating wideband localized waves of superluminal group velocity. Opt. Commun. 2007, 278, 1–7. [Google Scholar] [CrossRef]
- Saari, P.; Reivelt, K.; Valtna, H. Ultralocalized superluminal light pulses. Laser Phys. 2007, 17, 297–301. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saari, P.; Besieris, I.M. Energy Backflow in Unidirectional Monochromatic and Space–Time Waves. Photonics 2024, 11, 1129. https://doi.org/10.3390/photonics11121129
Saari P, Besieris IM. Energy Backflow in Unidirectional Monochromatic and Space–Time Waves. Photonics. 2024; 11(12):1129. https://doi.org/10.3390/photonics11121129
Chicago/Turabian StyleSaari, Peeter, and Ioannis M. Besieris. 2024. "Energy Backflow in Unidirectional Monochromatic and Space–Time Waves" Photonics 11, no. 12: 1129. https://doi.org/10.3390/photonics11121129
APA StyleSaari, P., & Besieris, I. M. (2024). Energy Backflow in Unidirectional Monochromatic and Space–Time Waves. Photonics, 11(12), 1129. https://doi.org/10.3390/photonics11121129