Advances in Infrared Detectors for In-Memory Sensing and Computing
Abstract
:1. Introduction
2. Performance of ISC Devices
2.1. Working Principles of ISC Devices
2.2. Performance Indicators
3. Development of Infrared ISC Devices
3.1. Phototransistors for Storage and Computation
3.1.1. Heterojunction Transistors
3.1.2. Floating Gate Transistor
3.2. Optoelectronic Memristor for Storage and Computation
3.2.1. Photon–Electron Coupled Optoelectronic Memristor
3.2.2. Conductive Filament Memristor
4. Infrared Neural Network
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, F.; Chai, Y. Near-Sensor and in-Sensor Computing. Nat. Electron. 2020, 3, 664–671. [Google Scholar] [CrossRef]
- Ielmini, D.; Wong, H.-S.P. In-Memory Computing with Resistive Switching Devices. Nat. Electron. 2018, 1, 333–343. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The Missing Memristor Found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Meng, D.; Bai, F.; Zhai, J.; Wang, Z.L. Photon-Memristive System for Logic Calculation and Nonvolatile Photonic Storage. Adv. Funct. Mater. 2020, 30, 2002945. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, Y.; Wang, Y.; Zhang, J.; Fang, L.; Jin, S.; Shao, Y.; Huang, J. Recent Advances in Transistor-Based Artificial Synapses. Adv. Funct. Mater. 2019, 29, 1903700. [Google Scholar] [CrossRef]
- Sun, B.; Guo, T.; Zhou, G.; Ranjan, S.; Jiao, Y.; Wei, L.; Zhou, Y.N.; Wu, A.Y. Synaptic Devices Based Neuromorphic Computing Applications in Artificial Intelligence. Mater. Today Phys. 2021, 18, 100393. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, R.; Guo, J.; Ni, H.; Bhutta, M.U.M. In-Sensor Visual Perception and Inference. Intell. Comput. 2023, 2, 0043. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, C.; Li, Y.; Yangdong, X.; Wang, P.; Li, Z.-A.; Wang, S.; Yu, W.; Liu, G.; Cheng, B.; et al. In-Sensor Dynamic Computing for Intelligent Machine Vision. Nat. Electron. 2024, 7, 225–233. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, Z.; Tang, J.; Gao, B.; Zhang, Y.; Qian, H.; Wu, H. Memristor-Based Signal Processing for Edge Computing. Tsinghua Sci. Technol. 2022, 27, 455–471. [Google Scholar] [CrossRef]
- Park, H.-L.; Lee, Y.; Kim, N.; Seo, D.-G.; Go, G.-T.; Lee, T.-W. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Adv. Mater. 2020, 32, 1903558. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; You, J.; Yang, M.; Han, Z.; Lin, D.; Liu, M.; Zhang, N.; Jiang, Z.; Guo, H.; et al. An Image Detection–Memory–Recognition Artificial Visual Unit Based on Dual-Gate Phototransistors. Adv. Intell. Syst. 2023, 5, 2200328. [Google Scholar] [CrossRef]
- Liu, S.; Liu, L.; Tang, J.; Yu, B.; Wang, Y.; Shi, W. Edge Computing for Autonomous Driving: Opportunities and Challenges. Proc. IEEE 2019, 107, 1697–1716. [Google Scholar] [CrossRef]
- He, Y.; Deng, B.; Wang, H.; Cheng, L.; Zhou, K.; Cai, S.; Ciampa, F. Infrared Machine Vision and Infrared Thermography with Deep Learning: A Review. Infrared Phys. Technol. 2021, 116, 103754. [Google Scholar] [CrossRef]
- Tan, C.L.; Mohseni, H. Emerging Technologies for High Performance Infrared Detectors. Nanophotonics 2018, 7, 169–197. [Google Scholar] [CrossRef]
- Wang, J.; Ilyas, N.; Ren, Y.; Ji, Y.; Li, S.; Li, C.; Liu, F.; Gu, D.; Ang, K.-W. Technology and Integration Roadmap for Optoelectronic Memristor. Adv. Mater. 2024, 36, e2307393. [Google Scholar] [CrossRef]
- Hu, L.; Zhuge, X.; Wang, J.; Wei, X.; Zhang, L.; Chai, Y.; Xue, X.; Ye, Z.; Zhuge, F. Emerging Optoelectronic Devices for Brain-Inspired Computing. Adv. Elect. Mater. 2024, 2400482. [Google Scholar] [CrossRef]
- Rogalski, A. Scaling Infrared Detectors—Status and Outlook. Rep. Prog. Phys. 2022, 85, 126501. [Google Scholar] [CrossRef]
- Zeng, L.; Wu, D.; Jie, J.; Ren, X.; Hu, X.; Lau, S.P.; Chai, Y.; Tsang, Y.H. Van Der Waals Epitaxial Growth of Mosaic-Like 2D Platinum Ditelluride Layers for Room-Temperature Mid-Infrared Photodetection up to 10.6 Μm. Adv. Mater. 2020, 32, 2004412. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Han, W.; Ren, X.; Li, X.; Wu, D.; Liu, S.; Wang, H.; Lau, S.P.; Tsang, Y.H.; Shan, C.-X.; et al. Uncooled Mid-Infrared Sensing Enabled by Chip-Integrated Low-Temperature-Grown 2D PdTe2 Dirac Semimetal. Nano Lett. 2023, 23, 8241–8248. [Google Scholar] [CrossRef] [PubMed]
- Rogalski, A.; Kopytko, M.; Hu, W.; Martyniuk, P. Infrared HOT Photodetectors: Status and Outlook. Sensors 2023, 23, 7564. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Li, D.; Chen, P.; Pi, L.; Zhou, X.; Zhai, T. Van Der Waals Integration Based on Two-Dimensional Materials for High-Performance Infrared Photodetectors. Adv. Funct. Mater. 2021, 31, 2103106. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Hu, W. Organic Photodiodes and Phototransistors toward Infrared Detection: Materials, Devices, and Applications. Chem. Soc. Rev. 2020, 49, 653–670. [Google Scholar] [CrossRef]
- Tian, Y.; Luo, H.; Chen, M.; Li, C.; Kershaw, S.V.; Zhang, R.; Rogach, A.L. Mercury Chalcogenide Colloidal Quantum Dots for Infrared Photodetection: From Synthesis to Device Applications. Nanoscale 2023, 15, 6476–6504. [Google Scholar] [CrossRef]
- Wu, D.; Guo, C.; Zeng, L.; Ren, X.; Shi, Z.; Wen, L.; Chen, Q.; Zhang, M.; Li, X.J.; Shan, C.-X.; et al. Phase-Controlled van Der Waals Growth of Wafer-Scale 2D MoTe2 Layers for Integrated High-Sensitivity Broadband Infrared Photodetection. Light. Sci. Appl. 2023, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Mo, Z.; Li, X.; Ren, X.; Shi, Z.; Li, X.; Zhang, L.; Yu, X.; Peng, H.; Zeng, L.; et al. Integrated Mid-Infrared Sensing and Ultrashort Lasers Based on Wafer-Level Td-WTe2 Weyl Semimetal. Appl. Phys. Rev. 2024, 11, 041401. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, Y.; Kang, Y.; Chen, Y.; Tang, Y.; Jiang, T. Bioinspired Sensing-Memory-Computing Integrated Vision Systems: Biomimetic Mechanisms, Design Principles, and Applications. Sci. China Inf. Sci. 2024, 67, 151401. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Z.; Chen, J.; Ju, Z.; Ma, Y.; Niu, Z.; Xu, Z.; Zhang, T.; Shi, F. Recent Advances on Nanomaterials-Based Photothermal Sensing Systems. Trac-Trends Anal. Chem. 2024, 177, 117801. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, Z.; Wu, Q.; Wu, J.; Liu, S.; Chen, X.; Zhao, Q. 2D Black Phosphorus Infrared Photodetectors. Laser Photonics Rev. 2024, 12, 2400703. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, P.; Guo, Z.; Li, L.; Sun, T.; Liu, D.; Li, T.; Zu, G.; Xiong, L.; Zhang, J.; et al. Retina-Inspired Artificial Synapses with Ultraviolet to Near-Infrared Broadband Responses for Energy-Efficient Neuromorphic Visual Systems. Adv. Funct. Mater. 2023, 33, 2302885. [Google Scholar] [CrossRef]
- Das, S.; Pal, V.; Mukherjee, S.; Das, S.; Tiwary, C.S.; Ray, S.K. Multi-Wavelength Optoelectronic Synaptic Transistors Based on Transition Metal Telluride-Sulfide Heterostructures. Adv. Opt. Mater. 2024, 12, 2400037. [Google Scholar] [CrossRef]
- Guo, F.; Liu, Y.; Zhang, M.; Yu, W.; Li, S.; Zhang, B.; Hu, B.; Li, S.; Sun, A.; Jiang, J.; et al. VO2 /MoO3 Heterojunctions Artificial Optoelectronic Synapse Devices for Near-Infrared Optical Communication. Small 2024, 20, e2310767. [Google Scholar] [CrossRef]
- Ercan, E.; Lin, Y.; Sakai-Otsuka, Y.; Borsali, R.; Chen, W. Harnessing Biobased Materials in Photosynaptic Transistors with Multibit Data Storage and Panchromatic Photoresponses Extended to Near-Infrared Band. Adv. Opt. Mater. 2022, 10, 2201240. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Pang, X.; Jiang, Y.; Liu, X.; Li, Q.; Wang, Z.; Liu, C.; Hu, W.; Zhou, P. Non-Volatile 2D MoS2/Black Phosphorus Heterojunction Photodiodes in the near- to Mid-Infrared Region. Nat. Commun. 2024, 15, 6015. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, Y.; Jin, L.; Li, Y.; Li, Q.; Li, T.; Lucas, P.W.; Li, J.; Zhao, H.; Zhang, Y.; et al. Broadband Photoelectric Tunable Quantum Dot Based Resistive Random Access Memory. J. Mater. Chem. C 2020, 8, 2178–2185. [Google Scholar] [CrossRef]
- Li, T.; Miao, J.; Fu, X.; Song, B.; Cai, B.; Ge, X.; Zhou, X.; Zhou, P.; Wang, X.; Jariwala, D.; et al. Reconfigurable, Non-Volatile Neuromorphic Photovoltaics. Nat. Nanotechnol. 2023, 18, 1303–1310. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, T.; Yang, Y.; Huang, R. A Comprehensive Review on Emerging Artificial Neuromorphic Devices. Appl. Phys. Rev. 2020, 7, 011312. [Google Scholar] [CrossRef]
- Tang, J.; Yuan, F.; Shen, X.; Wang, Z.; Rao, M.; He, Y.; Sun, Y.; Li, X.; Zhang, W.; Li, Y.; et al. Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges. Adv. Mater. 2019, 31, 1902761. [Google Scholar] [CrossRef] [PubMed]
- Chua, L. Memristor-The Missing Circuit Element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. The Future of Electronics Based on Memristive Systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, H.; Burr, G.W.; Hwang, C.S.; Wang, K.L.; Xia, Q.; Yang, J.J. Resistive Switching Materials for Information Processing. Nat. Rev. Mater. 2020, 5, 173–195. [Google Scholar] [CrossRef]
- Tanim, M.M.H.; Templin, Z.; Zhao, F. Natural Organic Materials Based Memristors and Transistors for Artificial Synaptic Devices in Sustainable Neuromorphic Computing Systems. Micromachines 2023, 14, 235. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tang, W.; Zhang, B.; Yang, R.; Miao, X. Emerging Memristive Neurons for Neuromorphic Computing and Sensing. Sci. Technol. Adv. Mater. 2023, 24, 2188878. [Google Scholar] [CrossRef]
- Diorio, C.; Hasler, P.; Minch, A.; Mead, C.A. A Single-Transistor Silicon Synapse. IEEE Trans. Electron. Devices 1996, 43, 1972–1980. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, L.; Huang, W.; Li, Y.; Huang, S.; Zhu, Y.; Yang, D.; Pi, X. Optoelectronic Synaptic Devices for Neuromorphic Computing. Adv. Intell. Syst. 2021, 3, 2000099. [Google Scholar] [CrossRef]
- Han, C.; Han, X.; Han, J.; He, M.; Peng, S.; Zhang, C.; Liu, X.; Gou, J.; Wang, J. Light-Stimulated Synaptic Transistor with High PPF Feature for Artificial Visual Perception System Application. Adv. Funct. Mater. 2022, 32, 2113053. [Google Scholar] [CrossRef]
- Wang, X.; Zong, Y.; Liu, D.; Yang, J.; Wei, Z. Advanced Optoelectronic Devices for Neuromorphic Analog Based on Low-Dimensional Semiconductors. Adv. Funct. Mater. 2023, 33, 2213894. [Google Scholar] [CrossRef]
- Dai, S.; Liu, X.; Liu, Y.; Xu, Y.; Zhang, J.; Wu, Y.; Cheng, P.; Xiong, L.; Huang, J. Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing. Adv. Mater. 2023, 35, 2300329. [Google Scholar] [CrossRef]
- Han, J.; Yun, S.; Lee, S.; Yu, J.; Choi, Y. A Review of Artificial Spiking Neuron Devices for Neural Processing and Sensing. Adv. Funct. Mater. 2022, 32, 2204102. [Google Scholar] [CrossRef]
- Yu, S. Neuro-Inspired Computing With Emerging Nonvolatile Memory. Proc. IEEE 2018, 106, 260–285. [Google Scholar] [CrossRef]
- Hou, Y.; Li, Y.; Zhang, Z.; Li, J.; Li, J.; Qi, D.-H.; Chen, X.; Wang, J.; Yao, B.-W.; Yu, M.-X.; et al. Large-Scale and Flexible Optical Synapses for Neuromorphic Computing and Integrated Visible Information Sensing Memory Processing. ACS Nano 2020, 15, 1497–1508. [Google Scholar] [CrossRef]
- Roldan, R.; Silva-Guillen, J.A.; Pilar Lopez-Sancho, M.; Guinea, F.; Cappelluti, E.; Ordejon, P. Electronic Properties of Single-Layer and Multilayer Transition Metal Dichalcogenides MX2 (M = Mo, W and X = S, Se). Ann. Phys. Berl. 2014, 526, 347–357. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Fraser, M.; Ye, W.; She, D.; Chen, J.; Lv, Z.; Roy, V.A.L.; Li, H.; Zhou, K.; et al. Near-Infrared-Irradiation-Mediated Synaptic Behavior from Tunable Charge-Trapping Dynamics. Adv. Electron. Mater. 2020, 6, 1900765. [Google Scholar] [CrossRef]
- Yang, H.; Hu, Y.; Zhang, X.; Ding, Y.; Wang, S.; Su, Z.; Shuai, Y.; Hu, P. Near-Infrared Optical Synapses Based on Multilayer MoSe2 Moiré Superlattice for Artificial Retina. Adv. Funct. Mater. 2023, 34, 2308149. [Google Scholar] [CrossRef]
- Hou, P.F.; Tan, S.; Zheng, S. Design and Implementation of an Infrared Artificial Visual Neural Synapse Based on P-WSe2/n-Ta2NiS5 van Der Waals Heterojunction. J. Mater. Chem. C 2024, 12, 16722–16731. [Google Scholar] [CrossRef]
- Taffelli, A.; Dire, S.; Quaranta, A.; Pancheri, L. MoS2 Based Photodetectors: A Review. Sensors 2021, 21, 2758. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, S.H.; Kim, G.S.; Park, J.; Park, J.H.; Kim, J.; Saraswat, K.C.; Kim, J.; Yu, H.Y. Infrared Detectable MoS2 Phototransistor and Its Application to Artificial Multilevel Optic-Neural Synapse. ACS Nano 2019, 13, 10294–10300. [Google Scholar] [CrossRef]
- Islam, M.M.; Krishnaprasad, A.; Dev, D.; Martinez-Martinez, R.; Okonkwo, V.; Wu, B.; Han, S.S.; Bae, T.-S.; Chung, H.-S.; Touma, J.; et al. Multiwavelength Optoelectronic Synapse with 2D Materials for Mixed-Color Pattern Recognition. ACS Nano 2022, 16, 10188–10198. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Z.; Wang, Y.; Sun, J.; You, Q.; Zhu, M.; Li, L.; Deng, T. Polarization-Sensitive Optoelectronic Synapse Based on 3D Graphene/MoS2 Heterostructure. Adv. Funct. Mater. 2023, 34, 2302288. [Google Scholar] [CrossRef]
- Mukherjee, S.; Koren, E. Indium Selenide (In2Se3)—An Emerging Van-Der-Waals Material for Photodetection and Non-Volatile Memory Applications. Isr. J. Chem. 2022, 62, e202100112. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, H.; Huang, J.; Zhang, X.; Tan, B.; Shang, H.; Zhang, S.; Feng, W.; Zhu, J.; Zhang, J.; et al. Flexible Optical Synapses Based on In2Se3/MoS2 Heterojunctions for Artificial Vision Systems in the Near-Infrared Range. ACS Appl. Mater. Interfaces 2022, 14, 55839–55849. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Tang, B.; Liao, J.; Chen, Q. A Vis-SWIR Photonic Synapse with Low Power Consumption Based on WSe 2 /In 2 Se 3 Ferroelectric Heterostructure. Adv. Elect. Mater. 2022, 8, 2200343. [Google Scholar] [CrossRef]
- Yan, T.; Cai, Y.; Wang, Y.; Yang, J.; Li, S.; Zhan, X.; Wang, F.; Cheng, R.; Wang, F.; He, J.; et al. Near-Infrared Optoelectronic Synapses Based on a Te/α-In2Se3 Heterojunction for Neuromorphic Computing. Sci. China Inf. Sci. 2023, 66, 160404. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Tian, J.; Lyu, F.; Liao, J.; Chen, Q. Multi-Functional Platform for In-Memory Computing And Sensing Based on 2D Ferroelectric Semiconductor α-In2Se3. Adv. Funct. Mater. 2023, 34, 2306486. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, C.; Guo, Y.; Yang, Y.; Xing, Y.; Que, W. PbS QD-Based Photodetectors: Future-Oriented near-Infrared Detection Technology. J. Mater. Chem. C 2021, 9, 417–438. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Liu, G.; Liu, K.; Li, K.; Wei, X.; Zhu, M.; Wen, W.; Zhao, Z.; Guo, Y.; et al. Short-Wave Infrared Synaptic Phototransistor with Ambient Light Adaptability for Flexible Artificial Night Visual System. Adv. Funct. Mater. 2022, 33, 2208836. [Google Scholar] [CrossRef]
- Wen, Z.; Wang, S.; Yi, F.; Zheng, D.; Yan, C.; Sun, Z. Bidirectional Invisible Photoresponse Implemented in a Traps Matrix-Combination toward Fully Optical Artificial Synapses. ACS Appl. Mater. Interfaces 2023, 15, 55916–55924. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Z.; Zhang, F. Semitransparent Polymer Solar Cells with 9.06% Efficiency and 27.1% Average Visible Transmittance Obtained by Employing a Smart Strategy. J. Mater. Chem. A 2019, 7, 7025–7032. [Google Scholar] [CrossRef]
- Liu, T.; Lin, Q.; Ma, Y.; Wang, S.; Chen, H.; Wei, Y.; Song, Y.; Shen, L.; Huang, F.; Huang, H. Multifunctional Organic Vertical Photodiodes for Photo-Detection and Photo-Synapse Enabled by Modulation of the Interface Energy Barrier. Adv. Opt. Mater. 2022, 10, 2201104. [Google Scholar] [CrossRef]
- Han, J.; Du, X.; Zhang, Z.; He, Z.; Han, C.; Xie, R.; Wang, F.; Tao, S.; Hu, W.; Shan, C.; et al. Near-Infrared Heterojunction Field Modulated Phototransistors with Distinct Photodetection/Photostorage Switching Features for Artificial Visuals. J. Mater. Chem. C 2022, 10, 9198–9207. [Google Scholar] [CrossRef]
- Ramoroka, M.E.; Yussuf, S.T.; Nwambaekwe, K.C.; Ndipingwi, M.M.; John-Denk, V.S.; Modibane, K.D.; Iwuoha, E.I.; Douman, S.F. Highly Electro-Conductive Thiophene and N-Methylpyrrole Functionalized Hyperbranched Polypropylenimine Tetramine-Co-Poly(3-Hexylthiophene-2,5-Diyl) Donor Materials for Organic Solar Cells. J. Sci. 2023, 8, 100614. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z.; Sun, T.; Guo, P.; Xu, L.; Gao, H.; Dai, S.; Xiong, L.; Huang, J. Energy-efficient Organic Photoelectric Synaptic Transistors with Environment-friendly CuInSe2 Quantum Dots for Broadband Neuromorphic Computing. SmartMat 2023, 5, e1246. [Google Scholar] [CrossRef]
- Luan, W.; Zhao, Z.; Li, H.; Zhai, Y.; Lv, Z.; Zhou, K.; Xue, S.; Zhang, M.; Yan, Y.; Cao, Y.; et al. Near-Infrared Response Organic Synaptic Transistor for Dynamic Trace Extraction. J. Phys. Chem. Lett. 2024, 15, 8845–8852. [Google Scholar] [CrossRef]
- Leng, Y.; Lv, Z.; Huang, S.; Xie, P.; Li, H.; Zhu, S.; Sun, T.; Zhou, Y.; Zhai, Y.; Li, Q.; et al. A Near-Infrared Retinomorphic Device with High Dimensionality Reservoir Expression. Adv. Mater. 2024, 36, 2411225. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Lee, W.-K.; Kim, S.; Lim, D.C.; Kim, Y. Near-Infrared-Sensing Flexible Organic Synaptic Transistors with Water-Processable Charge-Trapping Polymers for Potential Neuromorphic Computing/Skin Applications. Adv. Intell. Syst. 2024, 6, 2300651. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Wang, Z. ZnO-Based Photodetector: From Photon Detector to Pyro-Phototronic Effect Enhanced Detector. J. Phys. D-Appl. Phys. 2019, 52, 223001. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Liu, T.; Wei, Y.; Yao, G.; Guo, Y.; Lin, Q.; Lin, Q.; Han, X.; Zhang, C.; et al. Retina-Inspired Organic Photonic Synapses for Selective Detection of SWIR Light. Angew. Chem. 2022, 62, e202213733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, Q.; Duan, Y.; Yang, F.; Feng, X.; Zheng, M.; Guo, J.; Cheng, G.; Du, Z. The Photoelectric Synaptic Device with Sensing-Memory-Computing Function Regulated by All-Optical Pulse. Adv. Funct. Mater. 2023, 34, 2310001. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Liu, C.; Xie, R.; Hu, W.; Zhou, P. All-in-One Two-Dimensional Retinomorphic Hardware Device for Motion Detection and Recognition. Nat. Nanotechnol. 2022, 17, 27–32. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Zhao, Q.; Ni, Z.; Zou, Y.; Yang, J.; Wang, L.; Sun, Y.; Guo, Y.; Hu, W.; et al. A Retina-Like Dual Band Organic Photosensor Array for Filter-Free Near-Infrared-to-Memory Operations. Adv. Mater. 2017, 29, 1701772. [Google Scholar] [CrossRef]
- Mu, B.; Guo, L.; Liao, J.; Xie, P.; Ding, G.; Lv, Z.; Zhou, Y.; Han, S.; Yan, Y. Near-Infrared Artificial Synapses for Artificial Sensory Neuron System. Small 2021, 17, 2103837. [Google Scholar] [CrossRef]
- Lian, H.; Liao, Q.; Yang, B.; Zhai, Y.; Han, S.-T.; Zhou, Y. Optoelectronic Synaptic Transistors Based on Upconverting Nanoparticles. J. Mater. Chem. C 2021, 9, 640–648. [Google Scholar] [CrossRef]
- Jin, T.; Gao, J.; Wang, Y.; Zheng, Y.; Sun, S.; Liu, L.; Lin, M.; Chen, W. Two-Dimensional Reconfigurable Electronics Enabled by Asymmetric Floating Gate. Nano Res. 2022, 15, 4439–4447. [Google Scholar] [CrossRef]
- Li, W.; Zhou, S.; Xia, X.; Wang, Y.; Yang, K.; Hao, T.; Zhang, X.; Yang, Q.; Ni, Z.; Jiang, J.; et al. Ultrahigh and Tunable Negative Photoresponse in Organic-Gated Carbon Nanotube Film Field-Effect Transistors. Adv. Funct. Mater. 2023, 33, 2305724. [Google Scholar] [CrossRef]
- Bach, T.P.A.; Cho, S.; Kim, H.; Nguyen, D.A.; Im, H. 2D van Der Waals Heterostructure with Tellurene Floating-Gate for Wide Range and Multi-Bit Optoelectronic Memory. ACS Nano 2024, 18, 4131–4139. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Peng, R.; Wu, C.; Li, M. Programmable Black Phosphorus Image Sensor for Broadband Optoelectronic Edge Computing. Nat. Commun. 2022, 13, 1485. [Google Scholar] [CrossRef]
- Wu, L.; Shi, M.; Dai, Z.; Ye, T.; Deng, J.; Yu, Y.; Wang, R.; Bu, Y.; Cui, T.; Ma, J.; et al. Visible-to-Mid-Infrared In-Sensor Computing With a Reconfigurable Black Phosphorus Photodiode. IEEE Electron. Device Lett. 2024, 45, 1217–1220. [Google Scholar] [CrossRef]
- Wang, Q.; Wen, Y.; Cai, K.; Cheng, R.; Yin, L.; Zhang, Y.; Li, J.; Wang, Z.; Wang, F.; Wang, F.; et al. Nonvolatile Infrared Memory in MoS2/PbS van Der Waals Heterostructures. Sci. Adv. 2018, 4, eaap7916. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Yang, X.; Wang, F.; Li, Z.; Ding, G.; Qiu, Z.; Wang, Y.; Zhou, Y.; Han, S.-T. Infrared-Sensitive Memory Based on Direct-Grown MoS2 -Upconversion-Nanoparticle Heterostructure. Adv. Mater. 2018, 30, e1803563. [Google Scholar] [CrossRef]
- Lai, H.; Lu, Z.; Lu, Y.; Yao, X.; Xu, X.; Chen, J.; Zhou, Y.; Liu, P.; Shi, T.; Wang, X.; et al. Fast, Multi-Bit and Vis-Infrared Broadband Nonvolatile Optoelectronic Memory with MoS2 /2D-Perovskite van Der Waals Heterojunction. Adv. Mater. 2022, 35, e2208664. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, C.; Peng, M.; Yu, Y.; Zhong, F.; Wang, P.; He, T.; Wang, Y.; Zhang, Z.; Xie, R.; et al. Giant Infrared Bulk Photovoltaic Effect in Tellurene for Broad-Spectrum Neuromodulation. Light. Sci. Appl. 2024, 13, 277. [Google Scholar] [CrossRef]
- Hu, L.; Yang, J.; Wang, J.; Cheng, P.; Chua, L.O.; Zhuge, F. All-Optically Controlled Memristor for Optoelectronic Neuromorphic Computing. Adv. Funct. Mater. 2021, 31, 2005582. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Yue, L.; Yang, F.; Dong, X.; Chen, J.; Zhang, X.; Chen, J.; Zhao, Y.; Chen, K.; et al. Multicolor Fully Light-Modulated Artificial Synapse Based on P-MoSe2/PxOy Heterostructured Memristor. J. Phys. Chem. Lett. 2024, 15, 8752–8758. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Liu, S.; Sun, H.; Jian, L.; Wei, W.; Chen, J.; Zhao, Y.; Chen, J.; Zhang, X.; Li, Y. Optoelectronic Memristive Synapse Behavior for the Architecture of Cu2ZnSnS4@BiOBr Embedded in Poly(Methyl Methacrylate). J. Phys. Chem. Lett. 2023, 14, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Gao, H.-Z.; Xu, W.-R.; Wang, J.-M.; Li, W.; Jiang, X.-D. Optoelectronic Artificial Synapse Based on Si1-xSnx Alloyed Film. Vacuum 2023, 212, 112002. [Google Scholar] [CrossRef]
- Ielmini, D. Resistive Switching Memories Based on Metal Oxides: Mechanisms, Reliability and Scaling. Semicond. Sci. Technol. 2016, 31, 063002. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, M.; Zhang, T.; Cai, Y.; Wang, Y.; Yang, Y.; Huang, R. Engineering Incremental Resistive Switching in TaO x Based Memristors for Brain-Inspired Computing. Nanoscale 2016, 8, 14015–14022. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Wang, Z.; Chen, J.; Yang, Q.; Lv, Z.; Zhou, Y.; Zhai, Y.; Li, Z.; Han, S.; et al. Near-Infrared Annihilation of Conductive Filaments in Quasiplane MoSe2 /Bi2 Se3 Nanosheets for Mimicking Heterosynaptic Plasticity. Small Weinh. Der Bergstr. Ger. 2019, 15, e1805431. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, J.; Ran, Y.; Pei, Y.; Wei, Y.; Sun, J.; Zhang, Z.; Wang, Y.; Zhou, Z.; Sun, Y.; et al. Memristors Based on NdNiO3 Nanocrystals Film as Sensory Neurons for Neuromorphic Computing. Mater. Horiz. 2023, 10, 4521–4531. [Google Scholar] [CrossRef]
- Bae, B.; Park, M.; Lee, D.; Sim, I.; Lee, K. Hetero-Integrated InGaAs Photodiode and Oxide Memristor-Based Artificial Optical Nerve for In-Sensor NIR Image Processing. Adv. Opt. Mater. 2023, 11, 2201905. [Google Scholar] [CrossRef]
- Yue, L.; Sun, H.; Zhu, Y.; Li, Y.; Yang, F.; Dong, X.; Chen, J.; Zhang, X.; Chen, J.; Zhao, Y.; et al. Electrical-Light Coordinately Modulated Synaptic Memristor Based on Ti3C2 MXene for Near-Infrared Artificial Vision Applications. J. Phys. Chem. Lett. 2024, 15, 8667–8675. [Google Scholar] [CrossRef]
- Wang, J.; Pan, X.; Zhao, Z.; Xie, Y.; Luo, W.; Xie, Q.; Zeng, H.; Shuai, Y.; Song, Z.; Wu, C.; et al. An Infrared Near-Sensor Reservoir Computing System Based on Large-Dynamic-Space Memristor with Tens of Thousands of States for Dynamic Gesture Perception. Adv. Sci. 2024, 11, e2307359. [Google Scholar] [CrossRef]
- Liang, F.; Cai, C.; Zhang, K.; Zhang, L.; Li, J.; Bi, H.; Wu, P.; Zhu, H.; Wang, C.; Wang, H.; et al. Infrared Gesture Recognition System Based on Near-Sensor Computing. IEEE Electron. Device Lett. 2021, 42, 1053–1056. [Google Scholar] [CrossRef]
- Chen, H.; Lv, L.; Wei, Y.; Liu, T.; Wang, S.; Shi, Q.; Huang, H. Self-Powered Flexible Artificial Synapse for near-Infrared Light Detection. Cell Rep. Phys. Sci. 2021, 2, 100507. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, D.; Liu, Z.; Li, S.; He, Z. Memtransistors Based on Non-Layered In2S3 Two-Dimensional Thin Films With Optical-Modulated Multilevel Resistance States and Gate-Tunable Artificial Synaptic Plasticity. IEEE Access 2020, 8, 106726–106734. [Google Scholar] [CrossRef]
- Han, J.; He, M.; Yang, M.; Han, Q.; Wang, F.; Zhong, F.; Xu, M.; Li, Q.; Zhu, H.; Shan, C.; et al. Light-Modulated Vertical Heterojunction Phototransistors with Distinct Logical Photocurrents. Light. Sci. Appl. 2020, 9, 167. [Google Scholar] [CrossRef]
- Duan, H.; Javaid, K.; Liang, L.; Huang, L.; Yu, J.; Zhang, H.; Gao, J.; Zhuge, F.; Chang, T.; Cao, H. Broadband Optoelectronic Synaptic Thin-Film Transistors Based on Oxide Semiconductors. Phys. Status Solidi-Rapid Res. Lett. 2020, 14, 1900630. [Google Scholar] [CrossRef]
- Huang, X.; Li, Q.; Shi, W.; Li, K.; Liu, X.; Liu, K.; Zhang, Y.; Liu, Y.; Wei, X.; Zhao, Z.; et al. Dual-Mode Learning of Ambipolar Synaptic Phototransistor Based on 2D Perovskite/Organic Heterojunction for Flexible Color Recognizable Visual System. Small 2021, 17, 2102820. [Google Scholar] [CrossRef] [PubMed]
- Sha, X.; Cao, Y.; Meng, L.; Yao, Z.; Gao, Y.; Gao, Y.; Zhou, N.; Zhou, N.; Zhang, Y.; Chu, P.K.; et al. Near-Infrared Photonic Artificial Synapses Based on Organic Heterojunction Phototransistors. Appl. Phys. Lett. 2022, 120, 151103. [Google Scholar] [CrossRef]
- Zha, J.; Shi, S.; Chaturvedi, A.; Huang, H.; Yang, P.; Yao, Y.; Liu, S.; Xia, Y.; Zhang, Z.; Wang, W.; et al. Electronic/Optoelectronic Memory Device Enabled by Tellurium-based 2D van Der Waals Heterostructure for in-Sensor Reservoir Computing at the Optical Communication Band. Adv. Mater. 2023, 35, e2211598. [Google Scholar] [CrossRef]
- Shen, R.; Jiang, Y.; Li, Z.; Tian, J.; Tian, J.; Li, S.; Li, T.; Chen, Q. Near-Infrared Artificial Optical Synapse Based on the P(VDF-TrFE)-Coated InAs Nanowire Field-Effect Transistor. Materials 2022, 15, 8247. [Google Scholar] [CrossRef]
- Lei, W.; Antoszewski, J.; Faraone, L. Progress, Challenges, and Opportunities for HgCdTe Infrared Materials and Detectors. Appl. Phys. Rev. 2015, 2, 041303. [Google Scholar] [CrossRef]
Device Type | Material | Mechanism | Synaptic Mode | Wavelength/nm | On/Off Ratio | Year | Ref. |
---|---|---|---|---|---|---|---|
Heterojunction Phototransistor | MoS2/Ge | Optoelectronic modulation | STDP | 520–1550 | - | 2019 | [56] |
In2S3 2DTFs/Au | Optoelectronic modulation | LTP, LTD | 405, 532, 635, 808 | 105 | 2020 | [104] | |
MoSe2/Bi2Se3 | All-Optical modulation | PPF, PPD, LTM | >800 | - | 2020 | [52] | |
Graphene/C60/Pentacene | All-Optical modulation | - | 650, 808, 980 | - | 2020 | [105] | |
InGaCdO/Au/Ti | Optoelectronic modulation | STP, LTP | 350–1000 | - | 2020 | [106] | |
PBTT | All-Optical modulation | EPSC, PPF, STP, LTP | −1850 | - | 2021 | [103] | |
PEA2SnI4/Y6 | Optoelectronic modulation | Dual-mode learning | 450, 520, 650, 808 | - | 2021 | [107] | |
Graphene/ZnO/PTB7-Th:IEICO-4F | Optoelectronic modulation | Memristive switching | 488–1064 | - | 2022 | [69] | |
PDPP:D6Si/PbS QDs | Optoelectronic modulation | EPSC, PPF, STP, LTP | 850, 1100 | - | 2022 | [65] | |
In2Se3/MoS2 | Optoelectronic modulation | STDP, PPF, LTM, Memristive switching | 1060 | - | 2022 | [60] | |
ITO/ZnO/P1:PC71BM/MoO3/Ag | Optoelectronic modulation | STDP, PPF, LTP, LTM, SRDP, Memristive switching | 1000–3000 | - | 2022 | [76] | |
WSe2/In2Se3 | Optoelectronic modulation | STDP, PPF, LTM | −1800 | - | 2022 | [61] | |
ITO/CuSCN/PTB7-Th and IEICO-4F/PDINO/Al | Optoelectronic modulation | STDP, PPF, LTM, Memristive switching | 450–950 | - | 2022 | [68] | |
WSe2/AFG | Optoelectronic modulation | STDP, PPF, LTM, Memristive switching | UV-NIR | >106 | 2022 | [82] | |
PtTe2/Si/Al2O3/MoS2 | Optoelectronic modulation | STDP, PPF, LTP, LTD | 300–2000 | - | 2022 | [57] | |
PDPPBTT/Au/SnO2 | Optoelectronic modulation | STDP, PPF, PTD, LTM | 808 | - | 2022 | [108] | |
TiO2/PbS QDs/Graphene | All-Optical modulation | STDP, SRDP, PPF, LTM, PPC | 360, 905 | - | 2023 | [66] | |
P3HT/CuInSe2 QDs | Optoelectronic modulation | PPF, LTP, LTD SRDP, EPSC | 365, 500, 850 | - | 2023 | [71] | |
MoSe2 | Optoelectronic modulation | Memristive switching | 240–1700 | - | 2023 | [53] | |
Te/α-In2Se3 | Optoelectronic modulation | LTP, LTD | 1550, 1940 | 5.25 × 104/8.3 × 103 | 2023 | [62] | |
Te/h-BN/Gr/CIPS | Optoelectronic modulation | LTM, Memristive switching | 1550 | - | 2023 | [109] | |
MoS2/SiO2/Ge | Optoelectronic modulation | PPF, LTM | 532, 1550 | - | 2023 | [11] | |
PbS QDs/PMMA/PbS QDs | Optoelectronic modulation | PPF, STP, LTP | 365, 550, 850 | - | 2023 | [29] | |
α-In2Se3/SiO2/Si++ | Optoelectronic modulation | STM, LTM | −1800 | - | 2023 | [63] | |
p-Si/n-ZnO | Optoelectronic modulation | LTP/LTD | 415, 530, 970 | - | 2023 | [77] | |
Graphene/MoS2 | Optoelectronic modulation | STD, LTD, PPF | 470–810, 1060 | - | 2023 | [58] | |
P3HT/LaF3: Yb/Ho UCQDs | Optoelectronic modulation | EPSC, PPF, SNDP | 980 | - | 2024 | [72] | |
PAMPSA:EDA/P3HT/PODTPPD-BT | Optoelectronic modulation | STDP, PPF, PTP, PPD, LTM | 905 | - | 2024 | [74] | |
SiO2/NaYF4:Yb, Er@SiO2/P3HT | All-Optical modulation | PPF | 980 | - | 2024 | [73] | |
VO2/MoO3 | Optoelectronic modulation | STDP, PPF, LTM, Memristive switching | 1342, 1550 | - | 2024 | [31] | |
CoTe2/ZnO/WS2 | Optoelectronic modulation | STDP, PPF, LTM, Memristive switching | −1000 | - | 2024 | [30] | |
p-WSe2/n-Ta2NiS5 | All-Optical modulation | PPF, LTM, Memristive switching | 1064, 1550 | - | 2024 | [54] | |
Au/LiNbO₃/Cr/Pt/Cr, LiTaO3 | Optoelectronic modulation | STDP, PPF, LTM, Memristive switching | Infrared Band | - | 2024 | [101] | |
Floating-Gate Phototransistor | ROT300/VOPc | Optoelectronic modulation | Memristive switching, LTM | 830 | - | 2017 | [79] |
Si/SiO2/IR-780 iodide/PMMA/pentacene/Au | Optoelectronic modulation | STDP, PPF, LTP, LTD, Memristive switching | 790 | - | 2021 | [80] | |
PVPy/UCNP | Optoelectronic modulation | STDP, PPF, PPD, LTM, Memristive switching | 980 | 10–120 | 2021 | [81] | |
P3HT-b-MH | Optoelectronic modulation | STDP, PPF, SRDP, LTM, Memristive switching | UV-NIR | - | 2022 | [32] | |
BP/Al2O3/HfO2/Al2O3 | Optoelectronic modulation | Memristive switching | 1500–3100 | - | 2022 | [85] | |
PM6/Y6/CNT | Optoelectronic modulation | - | 880 | - | 2023 | [83] | |
BP/MoS2/h-BN/graphene vdWs | Optoelectronic modulation | Memristive switching | MWIR, −3600 | - | 2024 | [33] | |
ReS2/hBN/2D Te | Optoelectronic modulation | Memristive switching | UV-NIR | −106 | 2024 | [84] | |
Photon–Electron Coupling Type Photo-Memristor | MoS2/PbS | Optoelectronic modulation | LTM | 850, 1310, 1550 | - | 2018 | [87] |
ITO/MoS2-UCNPs/Al | Optoelectronic modulation | Memristive switching | 980 | −120 | 2018 | [88] | |
Ag/PbS QDs@PMMA/ITO | Optoelectronic modulation | Memristive switching | 405–1177 | 104 | 2020 | [34] | |
InGaZnO | All-Optical modulation | STDP, PPF, LTM, Memristive switching | UV-NIR | - | 2021 | [91] | |
MoS2/2D-RPP | Optoelectronic modulation | LTM | 405–1550 | - | 2022 | [89] | |
Al/CZTS@BOB-PMMA/FTO | Optoelectronic modulation | STDP, PPF, LTP, LTM, Memristive switching | 808 | - | 2023 | [93] | |
ITO/a-Si1-xSnx/AlOy/Al | Optoelectronic modulation | STDP, PPF, SRDP, STM, LTM | 450–835 | - | 2023 | [94] | |
P-MoSe2/PxOy | All-Optical modulation | PPF, LTM, Memristive switching | 470–808 | - | 2024 | [92] | |
Conductive Filament Type Photo-Memristor | TiN/SiO2/TaOx/Pt | Optoelectronic modulation | STDP | NIR | - | 2016 | [96] |
MoSe2/Bi2Se3 | Optoelectronic modulation | STDP, PPF, PPD, LTM, SRDP, Memristive switching | 790 | 104 | 2019 | [97] | |
Pd/NdNiO₃/n-Si | Optoelectronic modulation | Memristive switching | Infrared Band | - | 2023 | [98] | |
InGaAs p-i-n | Optoelectronic modulation | Memristive switching | 760–770 | - | 2023 | [99] | |
Ag/Ti3C2/FTO | Optoelectronic modulation | STDP, PPF, LTP, LTD | Infrared Band | - | 2024 | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, W.; Qin, T.; Tang, X. Advances in Infrared Detectors for In-Memory Sensing and Computing. Photonics 2024, 11, 1138. https://doi.org/10.3390/photonics11121138
Feng W, Qin T, Tang X. Advances in Infrared Detectors for In-Memory Sensing and Computing. Photonics. 2024; 11(12):1138. https://doi.org/10.3390/photonics11121138
Chicago/Turabian StyleFeng, Weibo, Tianling Qin, and Xin Tang. 2024. "Advances in Infrared Detectors for In-Memory Sensing and Computing" Photonics 11, no. 12: 1138. https://doi.org/10.3390/photonics11121138
APA StyleFeng, W., Qin, T., & Tang, X. (2024). Advances in Infrared Detectors for In-Memory Sensing and Computing. Photonics, 11(12), 1138. https://doi.org/10.3390/photonics11121138