Resolution Enhancement of Geometric Phase Self-Interference Incoherent Digital Holography Using Synthetic Aperture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Resolution Analysis of GP-SIDH
2.2. Sparse Synthetic Aperture with GP-SIDH
3. Results
- Laplacian operator (Figure 7b):
- Unsharp masking (Figure 7c):
- Roberts operator
- Sobel operator (Figure 7e):
- Prewitt operator (Figure 7f):
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, B. Three-dimensional displays, past and present. Phys. Today 2013, 66, 36–41. [Google Scholar] [CrossRef]
- Kress, B.C.; Peroz, C. Optical architectures for displays and sensing in augmented, virtual, and mixed reality (AR, VR, MR). In Proc; SPIE: San Francisco, CA, USA, 2020; Volume 11310, p. 1131001. [Google Scholar]
- Benton, S.A.; Bove, V.M., Jr. Holographic Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Maimone, A.; Georgiou, A.; Kollin, J.S. Holographic near-eye displays for virtual and augmented reality. Acm Trans. Graph. (Tog) 2017, 36, 1–16. [Google Scholar] [CrossRef]
- Chang, C.; Bang, K.; Wetzstein, G.; Lee, B.; Gao, L. Toward the next-generation VR/AR optics: A review of holographic near-eye displays from a human-centric perspective. Optica 2020, 7, 1563–1578. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics; Roberts and Company Publishers: Greenwood Village, CO, USA, 2005. [Google Scholar]
- Hsueh, C.K.; Sawchuk, A.A. Computer-generated double-phase holograms. Appl. Opt. 1978, 17, 3874–3883. [Google Scholar] [CrossRef] [PubMed]
- Gerchberg, R.W. A practical algorithm for the determination of plane from image and diffraction pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Poon, T.C.; Liu, J.P. Introduction to Modern Digital Holography: With MATLAB; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Peng, Y.; Choi, S.; Padmanaban, N.; Wetzstein, G. Neural holography with camera-in-the-loop training. Acm. Trans. Graph. (Tog) 2020, 39, 1–14. [Google Scholar] [CrossRef]
- Lee, B.; Kim, D.; Lee, S.; Chen, C.; Lee, B. High-contrast, speckle-free, true 3D holography via binary CGH optimization. Sci. Rep. 2022, 12, 2811. [Google Scholar] [CrossRef]
- Shi, L.; Li, B.; Kim, C.; Kellnhofer, P.; Matusik, W. Towards real-time photorealistic 3D holography with deep neural networks. Nature 2021, 591, 234–239. [Google Scholar] [CrossRef]
- Yang, D.; Seo, W.; Yu, H.; Kim, S.I.; Shin, B.; Lee, C.K.; Moon, S.; An, J.; Hong, J.Y.; Sung, G.; et al. Diffraction-engineered holography: Beyond the depth representation limit of holographic displays. Nat. Commun. 2022, 13, 6012. [Google Scholar] [CrossRef]
- Sui, X.; He, Z.; Chu, D.; Cao, L. Non-convex optimization for inverse problem solving in computer-generated holography. Light. Sci. Appl. 2024, 13, 158. [Google Scholar] [CrossRef]
- Hong, J.; Kim, M. Overview of techniques applicable to self-interference incoherent digital holography. J. Eur. Opt.-Soc.-Rapid Publ. 2013, 8, 13077. [Google Scholar] [CrossRef]
- Kim, M.K. Full color natural light holographic camera. Opt. Express 2013, 21, 9636–9642. [Google Scholar] [CrossRef]
- Rosen, J.; Vijayakumar, A.; Kumar, M.; Rai, M.R.; Kelner, R.; Kashter, Y.; Bulbul, A.; Mukherjee, S. Recent advances in self-interference incoherent digital holography. Adv. Opt. Photonics 2019, 11, 1–66. [Google Scholar] [CrossRef]
- Rosen, J.; Brooker, G. Digital spatially incoherent Fresnel holography. Opt. Lett. 2007, 32, 912–914. [Google Scholar] [CrossRef]
- Rosen, J.; Brooker, G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photonics 2008, 2, 190–195. [Google Scholar] [CrossRef]
- Tahara, T.; Ito, K.; Kakue, T.; Fujii, M.; Shimozato, Y.; Awatsuji, Y.; Nishio, K.; Ura, S.; Kubota, T.; Matoba, O. Parallel phase-shifting digital holographic microscopy. Biomed. Opt. Express 2010, 1, 610–616. [Google Scholar] [CrossRef]
- Rosen, J.; Kelner, R. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems. Opt. Express 2014, 22, 29048–29066. [Google Scholar] [CrossRef]
- Tahara, T.; Kanno, T.; Arai, Y.; Ozawa, T. Single-shot phase-shifting incoherent digital holography. J. Opt. 2017, 19, 065705. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Kashter, Y.; Kelner, R.; Rosen, J. Coded aperture correlation holography–a new type of incoherent digital holograms. Opt. Express 2016, 24, 12430–12441. [Google Scholar] [CrossRef]
- Gopinath, S.; Bleahu, A.; Kahro, T.; John Francis Rajeswary, A.S.; Kumar, R.; Kukli, K.; Tamm, A.; Rosen, J.; Anand, V. Enhanced design of multiplexed coded masks for Fresnel incoherent correlation holography. Sci. Rep. 2023, 13, 7390. [Google Scholar] [CrossRef]
- Kumar, R.; Anand, V.; Rosen, J. 3D single shot lensless incoherent optical imaging using coded phase aperture system with point response of scattered airy beams. Sci. Rep. 2023, 13, 2996. [Google Scholar] [CrossRef]
- Choi, K.; Yim, J.; Yoo, S.; Min, S.W. Self-interference digital holography with a geometric-phase hologram lens. Opt. Lett. 2017, 42, 3940–3943. [Google Scholar] [CrossRef]
- Choi, K.; Lee, J.W.; Shin, J.; Hong, K.; Park, J.; Kim, H.R. Real-time noise-free inline self-interference incoherent digital holography with temporal geometric phase multiplexing. Photonics Res. 2023, 11, 906–916. [Google Scholar] [CrossRef]
- Choi, K.; Joo, K.I.; Lee, T.H.; Kim, H.R.; Yim, J.; Do, H.; Min, S.W. Compact self-interference incoherent digital holographic camera system with real-time operation. Opt. Express 2019, 27, 4818–4833. [Google Scholar] [CrossRef]
- Kim, Y.; Hong, K.; Yeom, H.J.; Choi, K.; Park, J.; Min, S.W. Wide-viewing holographic stereogram based on self-interference incoherent digital holography. Opt. Express 2022, 30, 12760–12774. [Google Scholar] [CrossRef]
- Yu, H.; Kim, Y.; Yang, D.; Seo, W.; Kim, Y.; Hong, J.Y.; Song, H.; Sung, G.; Sung, Y.; Min, S.W.; et al. Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system. Nat. Commun. 2023, 14, 3534. [Google Scholar] [CrossRef]
- Katz, B.; Rosen, J. Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements. Opt. Express 2010, 18, 962–972. [Google Scholar] [CrossRef]
- Kashter, Y.; Rosen, J. Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture. Opt. Express 2014, 22, 20551–20565. [Google Scholar] [CrossRef]
- Rai, M.R.; Rosen, J. Resolution-enhanced imaging using interferenceless coded aperture correlation holography with sparse point response. Sci. Rep. 2020, 10, 5033. [Google Scholar] [CrossRef]
- Desai, J.P.; Kumar, R.; Rosen, J. Optical incoherent imaging using annular synthetic aperture with the superposition of phase-shifted optical transfer functions. Opt. Lett. 2022, 47, 4012–4015. [Google Scholar] [CrossRef]
- Yang, F.; Kadis, A.; Mouthaan, R.; Wetherfield, B.; Kaczorowski, A.; Wilkinson, T.D. Perceptually motivated loss functions for computer generated holographic displays. Sci. Rep. 2022, 12, 7709. [Google Scholar] [CrossRef]
- Chen, Y.; Chi, Y.; Fan, J.; Ma, C. Gradient descent with random initialization: Fast global convergence for nonconvex phase retrieval. Math. Program. 2019, 176, 5–37. [Google Scholar] [CrossRef]
- Chen, L.; Tian, S.; Zhang, H.; Cao, L.; Jin, G. Phase hologram optimization with bandwidth constraint strategy for speckle-free optical reconstruction. Opt. Express 2021, 29, 11645–11663. [Google Scholar] [CrossRef]
- Van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Lehtinen, J. Noise2Noise: Learning Image Restoration without Clean Data. arXiv 2018, arXiv:1803.04189. [Google Scholar]
Method | PSNR (dB) | SSIM |
---|---|---|
Reference masked | 18.17 | 0.11 |
Laplace | 19.02 | 0.25 |
Unsharp mask | 19.38 | 0.27 |
Roberts | 20.76 | 0.37 |
Sobel | 21.64 | 0.42 |
Prewitt | 21.94 | 0.44 |
BM3D | 22.29 | 0.46 |
Noise2Noise | 20.81 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Choi, K.; Hong, K.; Min, S.-W. Resolution Enhancement of Geometric Phase Self-Interference Incoherent Digital Holography Using Synthetic Aperture. Photonics 2024, 11, 1170. https://doi.org/10.3390/photonics11121170
Kim Y, Choi K, Hong K, Min S-W. Resolution Enhancement of Geometric Phase Self-Interference Incoherent Digital Holography Using Synthetic Aperture. Photonics. 2024; 11(12):1170. https://doi.org/10.3390/photonics11121170
Chicago/Turabian StyleKim, Youngrok, KiHong Choi, Keehoon Hong, and Sung-Wook Min. 2024. "Resolution Enhancement of Geometric Phase Self-Interference Incoherent Digital Holography Using Synthetic Aperture" Photonics 11, no. 12: 1170. https://doi.org/10.3390/photonics11121170
APA StyleKim, Y., Choi, K., Hong, K., & Min, S. -W. (2024). Resolution Enhancement of Geometric Phase Self-Interference Incoherent Digital Holography Using Synthetic Aperture. Photonics, 11(12), 1170. https://doi.org/10.3390/photonics11121170