Engineering Orbital Angular Momentum in Structured Beams in General Astigmatic Systems via Symplectic Matrix Approach
Abstract
:1. Introduction
2. A Ray-Tracing Matrix Approach to a General Astigmatism
2.1. The Beam Structure
2.2. The OAM Transforms
3. Symplectic Intensity Moments Transforms
4. Suppression of the Astigmatic OAM with a Spherical Lens
5. The Experiment
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forbes, A.; de Oliveira, M.; Dennis, M.R. Structured light. Nat. Photonics 2021, 15, 253–262. [Google Scholar] [CrossRef]
- Wang, J. Advances in communications using optical vortices. Photonics Res. 2016, 4, B14–B28. [Google Scholar] [CrossRef]
- He, C.; Shen, Y.; Forbes, A. Towards higher-dimensional structured light. Light Sci. Appl. 2022, 11, 205. [Google Scholar] [CrossRef]
- Abramochkin, E.G.; Volostnikov, V.G. Generalized Hermite-Laguerre-Gauss beams. Phys. Wave Phenom. 2010, 18, 14–22. [Google Scholar] [CrossRef]
- Pan, J.; Wang, H.; Shen, Y.; Fu, X.; Liu, Q. Airy coherent vortices: 3D multilayer self-accelerating structured light. Appl. Phys. Lett. 2022, 121, 141102. [Google Scholar] [CrossRef]
- Shen, Y.; Meng, Y.; Fu, X.; Gong, M. Hybrid topological evolution of multi-singularity vortex beams: Generalized nature for helical-Ince–Gaussian and Hermite–Laguerre–Gaussian modes. J. Opt. Soc. Am. A 2019, 36, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Xia, H.; Xie, W.; Xiao, G.; Li, H. The generation and verification of Bessel-Gaussian beam based on coherent beam combining. Results Phys. 2020, 16, 102872. [Google Scholar] [CrossRef]
- Yue, Y.; Sun, H.; Wu, R.; Shi, Y. Gaussian Beam Born Modeling for Single-Scattering Waves in Visco-Acoustic Media. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1486–1490. [Google Scholar] [CrossRef]
- Rosales-Guzmán, C.; Ndagano, B.; Forbes, A. A review of complex vector light fields and their applications. J. Opt. 2018, 20, 123001. [Google Scholar] [CrossRef]
- Forbes, A.; Dudley, A.; McLaren, M. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics 2016, 8, 200–227. [Google Scholar] [CrossRef]
- Wang, J.; Liang, Y. Generation and Detection of Structured Light: A Review. Front. Phys. 2021, 9, 688284. [Google Scholar] [CrossRef]
- Ndagano, B.; Nape, I.; Cox, M.A.; Rosales-Guzman, C.; Forbes, A. Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication. J. Light. Technol. 2018, 36, 292–301. [Google Scholar] [CrossRef]
- Volyar, A.; Abramochkin, E.; Akimova, Y.; Bretsko, M. Control of the orbital angular momentum via radial numbers of structured Laguerre–Gaussian beams. Opt. Lett. 2022, 47, 2402–2405. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.V. Wave dislocation reactions in non-paraxial Gaussian beams. J. Mod. Opt. 1998, 45, 1845–1858. [Google Scholar] [CrossRef]
- Abramochkin, E.; Razueva, E.; Volostnikov, V. General astigmatic transform of Hermite–Laguerre–Gaussian beams. J. Opt. Soc. Am. A 2010, 27, 2506–2513. [Google Scholar] [CrossRef] [PubMed]
- Volyar, A.; Abramochkin, E.; Akimova, Y.; Bretsko, M. Super bursts of the orbital angular momentum in astigmatic-invariant structured LG beams. Opt. Lett. 2022, 47, 5537–5540. [Google Scholar] [CrossRef]
- Volyar, A.; Abramochkin, E.; Akimova, Y.; Bretsko, M.; Egorov, Y. Fast oscillations of orbital angular momentum and Shannon entropy caused by radial numbers of structured vortex beams. Appl. Opt. 2022, 61, 6398–6407. [Google Scholar] [CrossRef]
- Volyar, A.; Abramochkin, E.; Bretsko, M.; Khalilov, S.; Akimova, Y. General Astigmatism of Structured LG Beams: Evolution and Transformations of the OAM super-Bursts. Photonics 2023, 10, 727. [Google Scholar] [CrossRef]
- Chen, Y. Rays, waves, SU(2) symmetry and geometry: Toolkits for structured light. J. Opt. 2021, 23, 124004. [Google Scholar]
- Luneburg, R.K. Mathematical Theory of Optics; University of California Press: Berkeley, CA, USA, 1966. [Google Scholar]
- Guillemin, V.W.; Sternberg, S. Symplectic Techniques in Physics; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Dennis, M.R.; Alonso, M.A. Swings and roundabouts: Optical Poincaré spheres for polarization and Gaussian beams. Phil. Trans. R. Soc. A 2021, 375, 20150441. [Google Scholar] [CrossRef]
- Alieva, T.; Bastiaans, M.J. Alternative representation of the linear canonical integral transform. Opt. Lett. 2005, 30, 3302–3304. [Google Scholar] [CrossRef] [PubMed]
- Siegnam, A. Defining the Effective Radius of Curvature for a Nonideal Optical Beam. IEEE J. Quantum Electron. 1991, 27, 1146–1148. [Google Scholar]
- ISO 11146-2:2021; Lasers and Laser-Related Equipment—Test Methods for Laser Beam Widths, Divergence Angles and Beam Propagation Ratios—Part 2: General Astigmatic Beams. ISO: Geneva, Switzerland, 2021.
- Arnaud, J.A. Nonorthogonal optical waveguides and resonators. Bell Syst. Tech. J. 1970, 49, 2311–2348. [Google Scholar] [CrossRef]
- Lu, B.; Feng, G.; Cai, B. Complex ray representation of the astigmatic Gaussian beam propagation. Opt. Quantum Electron. 1993, 25, 275–284. [Google Scholar] [CrossRef]
- Nemes, G.; Siegman, A.E. Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics. J. Opt. Soc. Am. A 1994, 11, 2257–2264. [Google Scholar] [CrossRef]
- Siegman, A.E.; Sternberg, S. Lasers; University Science Books: Mill Valley, CA, USA, 1986. [Google Scholar]
- Alieva, T.; Bastiaans, M.J. Mode mapping in paraxial lossless optics. Opt. Lett. 2005, 30, 1461–1463. [Google Scholar] [CrossRef]
- Anan’ev, Y.A.; Bekshaev, A.Y. Theory of intensity moments for arbitrary light beams. Opt. Spectrosc. 1994, 76, 558–568. [Google Scholar]
- Arsenault, H.H. A matrix representation for non-symmetrical optical systems. J. Opt. 1980, 11, 87–91. [Google Scholar] [CrossRef]
- Bekshaev, A.Y.; Soskin, M.S.; Vasnetsov, M.V. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams. J. Opt. Soc. Am. A 2003, 20, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Bekshaev, A.Y.; Soskin, M.S.; Vasnetsov, M.V. Transformation of higher-order optical vortices upon focusing by an astigmatic lens. Opt. Commun. 2004, 241, 237–247. [Google Scholar] [CrossRef]
- Zhao, D.; Lin, Q.; Wang, S. Symmetrizing transformation of general astigmatic Gaussian beams. Opt. Quantum Electron. 1994, 26, 903–910. [Google Scholar] [CrossRef]
- Nemes, G.; Serna, J. Laser Beam Characterization with use of Second Order Moments: An Overview. DPSS (Diode Pumped Solid State) Lasers Appl. Issues 1998, 17, MQ2. [Google Scholar]
- Volyar, A.; Bretsko, M.; Khalilov, S.; Akimova, Y. Structurally Stable Astigmatic Vortex Beams with Super-High Orbital Angular Momentum (ABCD Matrix Approach). Photonics 2023, 10, 1048. [Google Scholar] [CrossRef]
- Arnaud, J.A.; Kogelnik, H. Gaussian Light Beams with General Astigmatism. Appl. Opt. 1969, 8, 1687–1693. [Google Scholar] [CrossRef] [PubMed]
- Abramochkin, E.; Volostnikov, V. Beam transformations and nontransformed beams. Opt. Commun. 1991, 83, 123–135. [Google Scholar] [CrossRef]
- Abramochkin, E.; Volostnikov, V. Modern Optics of Gaussian Beams; Fizmatlit: Moscow, Russia, 2010. (In Russian) [Google Scholar]
- Kotlyar, V.V.; Kovalev, A.A.; Porfirev, A.P. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl. Opt. 2017, 56, 4095–4104. [Google Scholar] [CrossRef] [PubMed]
- Volyar, A.; Abramochkin, E.; Egorov, Y.; Bretsko, M.; Akimova, Y. Fine structure of perturbed Laguerre–Gaussian beams: Hermite–Gaussian mode spectra and topological charge. Appl. Opt. 2020, 59, 7680–7687. [Google Scholar] [CrossRef] [PubMed]
- Kotlyar, V.V.; Kovalev, A.A. Orbital angular momentum of paraxial propagation-invariant laser beams. J. Opt. Soc. Am. A 2022, 39, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Alperin, S.N.; Niederriter, R.D.; Gopinath, J.T.; Siemens, M.E. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt. Lett. 2016, 41, 5019–5022. [Google Scholar] [CrossRef] [PubMed]
- Serna, J.; Nemeş, G. Decoupling of coherent Gaussian beams with general astigmatism. Opt. Lett. 1993, 18, 1774–1776. [Google Scholar] [CrossRef]
- Volyar, A.; Bretsko, M.; Akimova, Y.; Egorov, Y. Measurement of the vortex and orbital angular momentum spectra with a single cylindrical lens. Appl. Opt. 2019, 58, 5748–5755. [Google Scholar] [CrossRef] [PubMed]
- Volyar, A.; Abramochkin, E.; Akimova, Y.; Bretsko, M. Astigmatic-invariant structured singular beams. Photonics 2022, 9, 842. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Khonina, S.N.; Almazov, A.A.; Soifer, V.A.; Jefimovs, K.; Turunen, J. Elliptic Laguerre-Gaussian beams. J. Opt. Soc. Am. A 2006, 23, 43–56. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volyar, A.; Abramochkin, E.; Bretsko, M.; Akimova, Y. Engineering Orbital Angular Momentum in Structured Beams in General Astigmatic Systems via Symplectic Matrix Approach. Photonics 2024, 11, 191. https://doi.org/10.3390/photonics11030191
Volyar A, Abramochkin E, Bretsko M, Akimova Y. Engineering Orbital Angular Momentum in Structured Beams in General Astigmatic Systems via Symplectic Matrix Approach. Photonics. 2024; 11(3):191. https://doi.org/10.3390/photonics11030191
Chicago/Turabian StyleVolyar, Alexander, Eugeny Abramochkin, Mikhail Bretsko, and Yana Akimova. 2024. "Engineering Orbital Angular Momentum in Structured Beams in General Astigmatic Systems via Symplectic Matrix Approach" Photonics 11, no. 3: 191. https://doi.org/10.3390/photonics11030191
APA StyleVolyar, A., Abramochkin, E., Bretsko, M., & Akimova, Y. (2024). Engineering Orbital Angular Momentum in Structured Beams in General Astigmatic Systems via Symplectic Matrix Approach. Photonics, 11(3), 191. https://doi.org/10.3390/photonics11030191