The Diffraction Efficiency of Acrylate-Based Holographically Photopolymerized Gratings Enhanced by the Dark Reaction
Abstract
:1. Introduction
2. Photochemical Mechanism and Diffusion Model
3. Materials and Methods
3.1. Materials
3.2. Holographic Recording and Characterization
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tomita, Y.; Aoi, T.; Hasegawa, S.; Xia, F.; Wang, Y.; Oshima, J. Very high contrast volume holographic gratings recorded in photopolymerizable nanocomposite materials. Opt. Express 2020, 28, 28366–28382. [Google Scholar] [CrossRef]
- Stoilova, A.; Mateev, G.; Nazarova, D.; Nedelchev, L.; Stoykova, E.; Blagoeva, B.; Berberova, N.; Georgieva, S.; Todorov, P. Polarization holographic gratings in PAZO polymer films doped with particles of biometals. J. Photochem. Photobiol. A 2021, 411, 113196. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zheng, Y.B.; Shi, J.; Huang, H.; Walker, T.R.; Huang, T.J. Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals. Opt. Lett. 2009, 34, 2351–2353. [Google Scholar] [CrossRef]
- Liu, Y.J.; Dai, H.T.; Sun, X.W. Holographic fabrication of azo-dye-functionalized photonic structures. J. Mater. Chem. 2011, 21, 2982–2986. [Google Scholar] [CrossRef]
- Huang, W.; Liu, Y.H.; Li, K.; Ye, Y.; Xiao, D.; Chen, L.; Zheng, Z.G.; Liu, Y.J. Low-threshold organic lasing from a square optical microcavity fabricated by imaging holography. Opt. Express 2019, 27, 10022–10033. [Google Scholar] [CrossRef]
- Bianco, G.; Ferrara, M.A.; Borbone, F.; Roviello, A.; Striano, V.; Coppola, G. Photopolymer-based volume holographic optical elements: Design and possible applications. J. Eur. Opt. Soc. Rapid Publ. 2015, 10, 15057. [Google Scholar] [CrossRef]
- Liu, Y.J.; Sun, X.W.; Liu, J.H.; Dai, H.T.; Xu, K.S. A polarization insensitive 2 × 2 optical switch fabricated by liquid crystal–polymer composite. Appl. Phys. Lett. 2005, 86, 041115. [Google Scholar] [CrossRef]
- Liu, Y.J.; Sun, X.W.; Shum, P.; Li, H.P.; Mi, J.; Ji, W.; Zhang, X.H. Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings. Appl. Phys. Lett. 2006, 88, 061107. [Google Scholar] [CrossRef]
- Barachevsky, V.A. The current status of the development of light-sensitive media for holography (a review). Opt. Spectrosc. 2018, 124, 373–407. [Google Scholar] [CrossRef]
- Andrew, T.L.; Tsai, H.Y.; Menon, R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 2009, 324, 917–921. [Google Scholar] [CrossRef]
- Matusevich, V.; Wolf, F.; Tolstik, E.; Kowarschik, R. A transparent optical sensor for moisture detection integrated in a PQ-PMMA medium. IEEE Photonics Technol. Lett. 2013, 25, 969–972. [Google Scholar] [CrossRef]
- Mikulchyk, T.; Walshe, J.; Cody, D.; Martin, S.; Naydenova, I. Humidity and temperature induced changes in the diffraction efficiency and the Bragg angle of slanted photopolymer-based holographic gratings. Sens. Actuators B Chem. 2017, 239, 776–785. [Google Scholar] [CrossRef]
- Yu, D.; Liu, H.; Mao, D.; Geng, Y.; Wang, W.; Sun, L.; Lv, J. Holographic humidity response of slanted gratings in moisture-absorbing acrylamide photopolymer. Appl. Opt. 2015, 54, 6804–6812. [Google Scholar] [CrossRef]
- Melchels, F.P.W.; Domingos, M.A.N.; Klein, T.J.; Malda, J.; Bartolo, P.J.; Hutmacher, D.W. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 2012, 37, 1079–1104. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Y.; Li, M.D.; Li, Z.; Peng, H.; Xie, T.; Xie, X. Efficient 3D Printing via Photooxidation of Ketocoumarin Based Photopolymerization. Nat. Commun. 2021, 12, 2873. [Google Scholar] [CrossRef]
- Akbari, H.; Naydenova, I.; Martin, S. Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications. Appl. Opt. 2014, 53, 1343–1353. [Google Scholar] [CrossRef]
- Marín-Sáez, J.; Atencia, J.; Chemisana, D.; Collados, M.-V. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications. Opt. Express 2016, 24, A720–A730. [Google Scholar] [CrossRef]
- Malallah, R.E.; Li, H.; Kelly, D.P.; Healy, J.J.; Sheridan, J.T. A review of hologram storage and self-written waveguides formation in photopolymer media. Polymers 2017, 9, 337. [Google Scholar] [CrossRef]
- Pacheco, K.; Aldea, G.; Cassagne, C.; Nunzi, J.-M. Reflection holographic gratings in acrylamide-based photopolymer. In Proceedings of the Photonics, North Quebec, QC, Canada, 5–8 June 2006. [Google Scholar]
- Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Marínez, F.J.; Beléndez, A. Influence of index matching on AA/PVA photopolymers for low spatial frequency recording. Appl. Opt. 2015, 54, 3132–3140. [Google Scholar] [CrossRef]
- Fernández, R.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Tomita, Y.; Pascual, I.; Beléndez, A. Holographic waveguides in photopolymers. Opt. Express 2019, 27, 827–840. [Google Scholar] [CrossRef]
- Liu, P.; Chang, F.; Zhao, Y.; Li, Z.; Sun, X. Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures. Opt. Express 2018, 26, 1072–1082. [Google Scholar] [CrossRef]
- Tomita, Y.; Hata, E.; Momose, K.; Takayama, S.; Liu, X.; Chikama, K.; Klepp, J.; Pruner, C.; Fally, M. Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics. J. Mod. Opt. 2016, 63, S1–S31. [Google Scholar] [CrossRef]
- Bunning, T.J.; Natarajan, L.V.; Tondiglia, V.P.; Sutherland, R.L. Holographic polymer-dispersed liquid crystals (H-PDLCs). Annu. Rev. Mater. Sci. 2000, 30, 83–115. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zhang, B.; Jia, Y.; Xu, K. Improvement of the diffraction properties in holographic polymer dispersed liquid crystal Bragg gratings. Opt. Commun. 2003, 218, 27–32. [Google Scholar] [CrossRef]
- Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Martínez, F.J.; Pascual, I.; Beléndez, A. Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording. Opt. Mater. 2018, 76, 295–301. [Google Scholar] [CrossRef]
- Semkin, A.; Sharangovich, S. Holographic formation of non-uniform diffraction structures by arbitrary polarized recording beams in liquid crystal-photopolymer compositions. Polymers 2019, 11, 861. [Google Scholar] [CrossRef]
- Woo, J.Y.; Kim, E.H.; Kim, B.K.; Cho, Y.H. Morphology and switching of holographic gratings containing an azo dye. Liq. Cryst. 2007, 34, 527–533. [Google Scholar] [CrossRef]
- Nedelchev, L.; Ivanov, D.; Berberova, N.; Strijkova, V.; Nazarova, D. Polarization holographic gratings with high diffraction efficiency recorded in azopolymer PAZO. Opt. Quantum Electron. 2018, 50, 1–9. [Google Scholar] [CrossRef]
- Todorov, T.; Nikolova, L.; Tomova, N. Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence. Appl. Opt. 1984, 23, 4309–4312. [Google Scholar] [CrossRef]
- Tomita, Y.; Chikama, K.; Nohara, Y.; Suzuki, N.; Furushima, K.; Endoh, Y. Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film. Opt. Lett. 2006, 31, 1402–1404. [Google Scholar] [CrossRef]
- Li, C.; Cao, L.; Wang, Z.; Jin, G. Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer. Opt. Lett. 2014, 39, 6891–6894. [Google Scholar] [CrossRef]
- Liu, X.; Tomita, Y.; Oshima, J.; Chikama, K.; Matsubara, K.; Nakashima, T.; Kawai, T. Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%. Appl. Phys. Lett. 2009, 95, 261109. [Google Scholar] [CrossRef]
- Fukuda, T.; Uchida, E.; Masaki, K.; Ando, T.; Shimizu, T.; Barada, D.; Yatagai, T. An investigation on polarization-sensitive materials. In Proceedings of the 2011 ICO International Conference on Information Photonics, Ottawa, ON, Canada, 18–20 May 2011. [Google Scholar]
- Liu, Y.; Fan, F.; Hong, Y.; Zang, J.; Kang, G.; Tan, X. Volume holographic recording in Irgacure 784-doped PMMA photopolymer. Opt. Express 2017, 25, 20654–20662. [Google Scholar] [CrossRef]
- Fan, F.; Liu, Y.; Hong, Y.; Zang, J.; Kang, G.; Zhao, T.; Tan, X.; Shimura, T. Volume polarization holographic recording in phenanthrenequinone doped poly (MMA-Co-BzMA) photopolymer. Chem. Lett. 2018, 47, 520–523. [Google Scholar] [CrossRef]
- Ni, M.; Peng, H.; Liao, Y.; Yang, Z.; Xue, Z.; Xie, X. 3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”. Macromolecules 2015, 48, 2958–2966. [Google Scholar] [CrossRef]
- Liu, H.; Yu, D.; Jiang, Y.; Sun, X. Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer. Appl. Phys. B 2009, 95, 513–518. [Google Scholar] [CrossRef]
- Lin, S.H.; Hsu, K.Y.; Chen, W.Z.; Whang, W.T. Phenanthrenequinone-doped poly (methyl methacrylate) photopolymer bulk for volume holographic data storage. Opt. Lett. 2000, 25, 451–453. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Luo, S.; Jiang, Y. The shift of Bragg angular selectivity curve in darkness in glass-like photopolymer for holographic recording. Opt. Mater. 2009, 32, 261–265. [Google Scholar] [CrossRef]
- Yu, D.; Liu, H.; Wang, J.; Jiang, Y.; Sun, X. Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer. Opt. Commun. 2011, 284, 2784–2788. [Google Scholar] [CrossRef]
- Veniaminov, A.; Bartsch, E. Diffusional enhancement of holograms: Phenanthrenequinone in polycarbonate. J. Opt. A Pure Appl. Opt. 2002, 4, 387–392. [Google Scholar] [CrossRef]
- Huang, T.L.; Chen, Y.C. Synthesis and free radical photopolymerization of one-component type II photoinitiator based on benzophenone segment. J. Photochem. Photobiol. A 2022, 429, 113900. [Google Scholar] [CrossRef]
- Chen, G.; Ni, M.; Peng, H.; Huang, F.; Liao, Y.; Wang, M.; Zhu, J.; Roy, V.A.L.; Xie, X. Photoinitiation and inhibition under monochromatic green light for storage of colored 3D images in holographic polymer-dispersed liquid crystals. ACS Appl. Mater. Interfaces 2017, 9, 810–1819. [Google Scholar] [CrossRef] [PubMed]
- Moreau, V.; Renotte, Y.; Lion, Y. Characterization of DuPont photopolymer: Determination of kinetic parameters in a diffusion model. Appl. Opt. 2002, 41, 3427–3435. [Google Scholar] [CrossRef] [PubMed]
- Vrentas, J.S.; Duda, J.L. Diffusion in polymer-solvent systems. I. Reexamination of the free-volume theory J. Polym. Sci. B Polym. Phys. 1977, 15, 403–416. [Google Scholar]
- Cai, W.; Xia, H.; Li, W.; Kong, D.; Ma, Z.; Cheng, M.; Wang, J.; Liu, J.; Yang, X.; Luo, D.; et al. Electrohydrodynamically printed microlens arrays with controllable curvature based on surface functionalization. Surf. Interfaces 2024, 46, 103935. [Google Scholar] [CrossRef]
- Kogelnik, H. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 1969, 48, 2909–2947. [Google Scholar] [CrossRef]
- Bruder, F.K.; Fäcke, T.; Rölle, T. The chemistry and physics of Bayfol®HX film holographic photopolymer. Polymers 2017, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, J.; Liu, H.; Yu, D.; Sun, X.; Zhang, J. Study of effective optical thickness in photopolymer for application. Opt. Lett. 2012, 37, 2241–2243. [Google Scholar] [CrossRef]
- Wang, H.; Xu, S.; Ma, J.; Wang, Z.; Hou, E. Investigation of high thickness holographic gratings in acrylamide-based photopolymer. Mod. Phys. Lett. B 2016, 30, 1650382. [Google Scholar] [CrossRef]
- Liu, Y.J.; Sun, X.W. Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystals. Appl. Phys. Lett. 2007, 90, 191118. [Google Scholar] [CrossRef]
Component | Concentration (wt%) |
---|---|
Dipentaerythritol penta-/hexa-acrylate | 66.9 |
1-Vinyl-2-pyrrolidone | 30.9 |
Rose Bengal | 1.1 |
N-phenylglycine | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.; Cai, W.; Cheng, M.; Lan, S.; Kong, D.; Shen, J.; Cen, M.; Luo, D.; Chen, Y.; Liu, Y.J. The Diffraction Efficiency of Acrylate-Based Holographically Photopolymerized Gratings Enhanced by the Dark Reaction. Photonics 2024, 11, 320. https://doi.org/10.3390/photonics11040320
Bai Z, Cai W, Cheng M, Lan S, Kong D, Shen J, Cen M, Luo D, Chen Y, Liu YJ. The Diffraction Efficiency of Acrylate-Based Holographically Photopolymerized Gratings Enhanced by the Dark Reaction. Photonics. 2024; 11(4):320. https://doi.org/10.3390/photonics11040320
Chicago/Turabian StyleBai, Ziyan, Wenfeng Cai, Ming Cheng, Shun Lan, Delai Kong, Jian Shen, Mengjia Cen, Dan Luo, Yuan Chen, and Yan Jun Liu. 2024. "The Diffraction Efficiency of Acrylate-Based Holographically Photopolymerized Gratings Enhanced by the Dark Reaction" Photonics 11, no. 4: 320. https://doi.org/10.3390/photonics11040320
APA StyleBai, Z., Cai, W., Cheng, M., Lan, S., Kong, D., Shen, J., Cen, M., Luo, D., Chen, Y., & Liu, Y. J. (2024). The Diffraction Efficiency of Acrylate-Based Holographically Photopolymerized Gratings Enhanced by the Dark Reaction. Photonics, 11(4), 320. https://doi.org/10.3390/photonics11040320