Highly Sensitive Optical Fiber MZI Sensor for Specific Detection of Trace Pb2+ Ion Concentration
Abstract
:1. Introduction
2. Sensor Principle and Preparation
2.1. Sensing Principle
2.2. Preparation of the Materials and Sensor
2.3. Preparation of IIP-CS
2.4. Fabrication of the MZI Optical Fiber Sensor
3. Sensing Performance of the Sensor for Lead Ion
3.1. Functionalization of the Sensor
3.2. Lead Ion Detection of the Sensor
3.3. Specificity of the Sensor
3.4. Repeatability and Stability of the Sensor
3.5. Effect of pH and Temperature on the Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.J.; Yang, W.L.; Zhang, C.; Pan, R.; Chen, Q.L.; Zhang, L.Y. Cu2+-imprinted optical fiber SPR sensor for intelligent recognition. Opt. Express 2022, 30, 45525–45537. [Google Scholar] [CrossRef] [PubMed]
- Mosai, A.K.; Chimuka, L.; Cukrowska, E.M.; Kotzé, I.A.; Tutu, H. The recovery of Platinum (IV) from aqueous solutions by hydrazine-functionalised zeolite. Miner. Eng. 2019, 131, 304–312. [Google Scholar] [CrossRef]
- Ahmed, Z.; Asghar, M.M.; Malik, M.N.; Nawaz, K. Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resour. Policy 2020, 67, 101677. [Google Scholar] [CrossRef]
- Boruah, B.S.; Biswas, R. An optical fiber based surface plasmon resonance technique for sensing of lead ions: A toxic water pollutant. Opt. Fiber Technol. 2018, 46, 152–156. [Google Scholar] [CrossRef]
- Fang, Y.; Ren, G.; Ma, Y.; Wang, C.; Li, M.; Pang, X.; Pan, Q.; Li, J. Adsorption and reutilization of Pb (II) based on acid-resistant metal-organic gel. Sep. Purif. Technol. 2022, 295, 121253. [Google Scholar] [CrossRef]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef] [PubMed]
- Ruan, S.; Ebendorff-Heidepriem, H.; Ruan, Y. Optical fiber turn-on sensor for the detection of mercury based on immobilized fluorophore. Measurement 2018, 121, 122–126. [Google Scholar] [CrossRef]
- Tytła, M. Identification of the Chemical Forms of Heavy Metals in Municipal Sewage Sludge as a Critical Element of Ecological Risk Assessment in Terms of Its Agricultural or Natural Use. Int. J. Environ. Res. Public Health 2020, 17, 4640. [Google Scholar] [CrossRef] [PubMed]
- Valasques, G.S.; Dos, S.A.M.P.; De Souza, V.S.; Teiera, L.S.G.; Alves, J.P.S.; Santos, M.D.J.; Santos, W.P.C.; Bezerra, M.A. Multivariate optimization for the determination of cadmium and lead in crude palm oil by graphite furnace atomic absorption spectrometry after extraction induced by emulsion breaking. Microchem. J. 2020, 153, 104401. [Google Scholar] [CrossRef]
- Acar, O. The use of chemical modifiers in electrothermal atomic absorption spectrometry. Appl. Spectrosc. Rev. 2024, 59, 340–354. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bezerra, M.A.; Santos, A.S.; dos Santos, W.N.L.; Novaes, C.G.; de Oliveira, O.M.C.; Oliveira, M.L.; Garcia, R.L. Atomic absorption spectrometry—A: Multi element technique. Trac-Trends Anal. Chem. 2018, 100, 1–6. [Google Scholar] [CrossRef]
- Yu, S.; Guo, H.R.; Yang, W.L.; Zhao, Y.Q.; Wu, H.B.; Sun, X.M.; Yu, X.Y. Depth measurement error analysis and structural parameter correction of structured light depth imager. Photonics 2024, 11, 396. [Google Scholar] [CrossRef]
- Vuković, J.; Matsuoka, S.; Yoshimura, K.; Grdinić, V.; Grubešić, R.J.; Županić, O. Simultaneous determination of traces of heavy metals by solid-phase spectrophotometry. Talanta 2007, 71, 2085–2091. [Google Scholar] [CrossRef]
- Mende, M.; Schwarz, D.; Steinbach, C.; Boldt, R.; Schwarz, S. Simultaneous adsorption of heavy metal ions and anions from aqueous solutions on chitosan Investigated by spectrophotometry and SEM-EDX analysis. Colloid Surf. A-Physicochem. Eng. Asp. 2016, 510, 275–282. [Google Scholar] [CrossRef]
- Stepka, P.; Kratochvilova, M.; Kuchynka, M.; Raudenska, M.; Polanska, H.H.; Vicar, T.; Vaculovic, T.; Vaculovicova, M.; Masarik, M. Determination of Renal Distribution of Zinc, Copper, Iron, and Platinum in Mouse Kidney Using LA-ICP-MS. Biomed Res. Int. 2021, 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, N.S.; Shaverina, A.V.; Tsygankova, A.R.; Saprykin, A.I. Comparison of analytical performances of inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry for trace analysis of bismuth and bismuth oxide. Spectroc. Acta Pt. B-Atom. Spectr. 2018, 142, 23–28. [Google Scholar] [CrossRef]
- Winter, M.; Lessmann, F.; Harth, V. A method for reliable quantification of mercury in occupational and environmental medical urine samples by inductively coupled plasma mass spectrometry. Anal. Methods 2023, 15, 2030–2038. [Google Scholar] [CrossRef] [PubMed]
- Hrastnik, N.I.; Jovanovski, V.; Hočevar, S.B. In-situ prepared copper film electrode for adsorptive stripping voltammetric detection of trace Ni(II). Sens. Actuator B-Chem. 2020, 307, 127637. [Google Scholar] [CrossRef]
- Satarug, S.; Baker, J.R.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P.E.B.; Williams, D.J.; Moore, M.R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 2003, 137, 65–83. [Google Scholar] [CrossRef]
- Lin, Z.-T.; Lv, R.-Q.; Zhao, Y.; Zheng, H.-K. High-sensitivity salinity measurement sensor based on no-core fiber. Sens. Actuator A-Phys. 2020, 305, 111947. [Google Scholar] [CrossRef]
- Zhao, Y.; Tong, R.-J.; Chen, M.-Q.; Xia, F. Relative humidity sensor based on hollow core fiber filled with GQDs-PVA. Sens. Actuator B-Chem. 2019, 284, 96–102. [Google Scholar] [CrossRef]
- Rusyakina, O.; Baghdasaryan, T.; Chah, K.; Mergo, P.; Thienpont, H.; Caucheteur, C.; Berghmans, F.; Geernaert, T. Plasmon-Enhanced Refractometry Through Cladding Mode Excitation by a Fiber Bragg Grating in Photonic Crystal Fiber. J. Lightwave Technol. 2022, 40, 1121–1129. [Google Scholar] [CrossRef]
- Yi, D.; Liu, F.; Geng, Y.; Li, X.J.; Hong, X.M. High-sensitivity and large-range fiber optic temperature sensor based on PDMS-coated Mach-Zehnder interferometer combined with FBG. Opt. Express 2021, 29, 18624. [Google Scholar] [CrossRef]
- Huang, X.Y.; Li, X.M.; Yang, J.C.; Tao, C.Y.; Guo, X.G.; Bao, H.B.; Yin, Y.J.; Chen, H.F.; Zhu, Y.H. An in-line Mach-Zehnder Interferometer Using Thin-core Fiber for Ammonia Gas Sensing With High Sensitivity. Sci. Rep. 2017, 7, 44994. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhang, J.; Zhang, M.; Wang, M.H.; Zhao, Y. The optical fiber sensing platform for ferric ions detection: A practical application for carbon quantum dots. Sens. Actuator B-Chem. 2022, 364, 131857. [Google Scholar] [CrossRef]
- Ghosh, S.; Dissanayake, K.; Asokan, S.; Sun, T.; Rahman, B.M.A.; Grattan, K.T.V. Lead (Pb2+) ion sensor development using optical fiber gratings and nanocomposite materials. Sens. Actuator B-Chem. 2022, 364, 131818. [Google Scholar] [CrossRef]
- Cai, S.S.; Pan, H.X.; González-Vila, A.; Guo, T.; Gillan, D.C.; Wattiez, R.; Caucheteur, C. Selective detection of cadmium ions using plasmonic optical fiber gratings functionalized with bacteria. Opt. Express 2020, 28, 19740. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, S.; Jia, S.; Ren, J.; Farrell, G.; Lewis, E.; Wang, P. Ultra-high-resolution detection of Pb2+ ions using a black phosphorus functionalized microfiber coil resonator. Photonics Res. 2019, 6, 622–629. [Google Scholar] [CrossRef]
- Yap, S.H.K.; Chien, Y.; Tan, R.; Alauddin, A.R.S.; Ji, W.B.; Tjin, S.C.; Yong, K. An Advanced Hand-Held Microfiber-Based Sensor for Ultrasensitive Lead Ion Detection. ACS Sens. 2018, 3, 2506–2512. [Google Scholar] [CrossRef]
- Yi, Z.; Zhou, Y.; Ren, Y.; Hu, W.; Long, F.; Zhu, A. A novel sensitive DNAzyme-based optical fiber evanescent wave biosensor for rapid detection of Pb2+ in human serum. Analyst 2022, 147, 1467. [Google Scholar] [CrossRef]
- Li, G.S.; Liu, Z.; Feng, J.X.; Zhou, G.Y.; Huang, X.G. Pb2+ fiber optic sensor based on smart hydrogel coated Mach-Zehnder interferometer. Opt. Laser Technol. 2022, 145, 107453. [Google Scholar] [CrossRef]
- Nazari, M.; Amin, A.; Eden, N.T.; Duke, M.C.; Cheng, C.; Hill, M.R. Highly-efficient sulfonated UiO-66(Zr) optical fiber for rapid detection of trace levels of Pb2+. Int. J. Mol. Sci. 2021, 11, 6053. [Google Scholar] [CrossRef] [PubMed]
- Suc, N.V.; Ly, H.T.Y. Lead (II) removal from aqueous solution by chitosan flake modified with citric acid via crosslinking with glutaraldehyde. J. Chem. Technol. Biotechnol. 2013, 88, 1641–1649. [Google Scholar] [CrossRef]
Method | Probe | Sensitivity | Detection Range | LOD | Ref. |
---|---|---|---|---|---|
MCR | BP | - | 0~50 ppm | 0.0285 ppb | [28] |
MZI | GSH | - | 0~50 ppb | 5 ppb | [29] |
Reflective | DNAzyme | 5.67 a.u./nM | 0~24.86 ppb | 1.94 ppb | [30] |
F-P | SO3H group functionalized MOF | - | 0–64 ppm | 25.2 ppm | [31] |
NCF-FMF-NCF | hydrogel | 3.94 pm/ppm | 41.4–248.4 ppb | 5.08 ppb | [32] |
Ionic imprinting | CS | −12.68 pm/ppm | 0~350 ppm | 5.44 ppb | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; He, H.; Zhang, S.; Xiong, Y.; Pan, R.; Yang, W. Highly Sensitive Optical Fiber MZI Sensor for Specific Detection of Trace Pb2+ Ion Concentration. Photonics 2024, 11, 631. https://doi.org/10.3390/photonics11070631
Zhang L, He H, Zhang S, Xiong Y, Pan R, Yang W. Highly Sensitive Optical Fiber MZI Sensor for Specific Detection of Trace Pb2+ Ion Concentration. Photonics. 2024; 11(7):631. https://doi.org/10.3390/photonics11070631
Chicago/Turabian StyleZhang, Lijie, Hongbin He, Shangpu Zhang, Yanling Xiong, Rui Pan, and Wenlong Yang. 2024. "Highly Sensitive Optical Fiber MZI Sensor for Specific Detection of Trace Pb2+ Ion Concentration" Photonics 11, no. 7: 631. https://doi.org/10.3390/photonics11070631
APA StyleZhang, L., He, H., Zhang, S., Xiong, Y., Pan, R., & Yang, W. (2024). Highly Sensitive Optical Fiber MZI Sensor for Specific Detection of Trace Pb2+ Ion Concentration. Photonics, 11(7), 631. https://doi.org/10.3390/photonics11070631