Broadband Instantaneous Frequency Measurement Using Frequency-to-Time Mapping and Channelization
Abstract
:1. Introduction
2. Principle
3. Simulation and Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bui, L.A. Recent Advances in Microwave Photonics Instantaneous Frequency Measurements. Prog. Quantum Electron. 2019, 69, 100237. [Google Scholar] [CrossRef]
- Ivanov, A.; Morozov, O.; Sakhabutdinov, A.; Kuznetsov, A.; Nureev, I. Photonic-Assisted Receivers for Instantaneous Microwave Frequency Measurement Based on Discriminators of Resonance Type. Photonics 2022, 9, 754. [Google Scholar] [CrossRef]
- Yao, J. Microwave Photonic Systems. J. Light. Technol. 2022, 40, 6595–6607. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, F.; Ben, D.; Pan, S. Simultaneous Radar Detection and Frequency Measurement by Broadband Microwave Photonic Processing. J. Light. Technol. 2020, 38, 2171–2179. [Google Scholar] [CrossRef]
- Zhou, P.; Tang, Z.; Zhu, J.; Li, N. Instantaneous Frequency Measurement Using Photonics-Assisted Broadband Signal Generation and Processing. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 619–622. [Google Scholar] [CrossRef]
- Shi, N.; Hao, T.; Li, W.; Li, M. A Compact Multifrequency Measurement System Based on an Integrated Frequency-Scanning Generator. Appl. Sci. 2020, 10, 8571. [Google Scholar] [CrossRef]
- Wang, D.; Xu, K.; Dai, J.; Wu, Z.; Ji, Y.; Lin, J. Photonic-Assisted Approach for Instantaneous Microwave Frequency Measurement with Tunable Range by Using Mach-Zehnder Interferometers. Chin. Opt. Lett. 2013, 11, 020604. [Google Scholar] [CrossRef]
- Zhu, W.; Li, J.; Yan, M.; Pei, L.; Ning, T.; Zheng, J.; Wang, J. Photonic Multiple Microwave Frequency Measurement System with Single-Branch Detection Based on Polarization Interference. Electronics 2023, 12, 455. [Google Scholar] [CrossRef]
- Pan, S.; Fu, J.; Yao, J. Photonic Approach to the Simultaneous Measurement of the Frequency, Amplitude, Pulse Width, and Time of Arrival of a Microwave Signal. Opt. Lett. 2011, 37, 7–9. [Google Scholar] [CrossRef]
- Zou, X.; Pan, W.; Luo, B.; Yan, L. Photonic Instantaneous Frequency Measurement Using a Single Laser Source and Two Quadrature Optical Filters. IEEE Photonics Technol. Lett. 2011, 23, 39–41. [Google Scholar] [CrossRef]
- Chi, H.; Zou, X.; Yao, J. An Approach to the Measurement of Microwave Frequency Based on Optical Power Monitoring. IEEE Photonics Technol. Lett. 2008, 20, 1249–1251. [Google Scholar] [CrossRef]
- Zou, X.; Yao, J. An Optical Approach to Microwave Frequency Measurement with Adjustable Measurement Range and Resolution. IEEE Photonics Technol. Lett. 2008, 20, 1989–1991. [Google Scholar] [CrossRef]
- Xu, K.; Dai, J.; Duan, R.; Dai, Y.; Li, Y.; Wu, J.; Lin, J. Instantaneous Microwave Frequency Measurement Based on Phase-Modulated Links with Interferometric Detection. IEEE Photonics Technol. Lett. 2011, 23, 1328–1330. [Google Scholar] [CrossRef]
- Wang, C.; Yao, J. Ultrahigh-Resolution Photonic-Assisted Microwave Frequency Identification Based on Temporal Channelization. IEEE Trans. Microw. Theory Tech. 2013, 61, 4275–4282. [Google Scholar] [CrossRef]
- Huang, C.; Erwin; Hao, P. Frequency-To-Space Mapping Based Instantaneous Frequency Measurement System with Improved Accuracy and Resolution. In Proceedings of the 2023 International Topical Meeting on Microwave Photonics, Nanjing, China, 15–18 October 2023. [Google Scholar] [CrossRef]
- Zhou, F.; Chen, H.; Wang, X.; Zhou, L.; Dong, J.; Zhang, X. Photonic Multiple Microwave Frequency Measurement Based on Frequency-To-Time Mapping. IEEE Photonics J. 2018, 10, 5500807. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, D.; Lei, Z.; Xu, Z.; Zhou, T.; Zhong, X.; Chen, Z.; Pan, S. Impact of Dispersion Effects on Temporal-Convolution-Based Real-Time Fourier Transformation Systems. J. Light. Technol. 2020, 38, 4664–4676. [Google Scholar] [CrossRef]
- Hugues; Cortés, L.R.; Azaña, J. Optical Real-Time Fourier Transformation with Kilohertz Resolutions. Optica 2015, 3, 1–8. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, L.; Zhou, H.; Zhou, X.; Zhang, C.; Zhang, X. Ultrafast Electrical Spectrum Analyzer Based on All-Optical Fourier Transform and Temporal Magnification. Opt. Express 2017, 25, 7520–7529. [Google Scholar] [CrossRef]
- Yang, H.; Brunel, M.; Vallet, M.; Zhang, H.; Zhao, C. Optical Frequency-To-Time Mapping Using a Phase-Modulated Frequency-Shifting Loop. Opt. Lett. 2021, 46, 2336–2339. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, F.; Ben, D.; Pan, S. Photonics-Based Broadband Microwave Instantaneous Frequency Measurement by Frequency-To-Phase-Slope Mapping. IEEE Trans. Microw. Theory Tech. 2019, 67, 544–552. [Google Scholar] [CrossRef]
- Nguyen, L. Microwave Photonic Technique for Frequency Measurement of Simultaneous Signals. IEEE Photonics Technol. Lett. 2009, 21, 642–644. [Google Scholar] [CrossRef]
- Foster, M.A.; Salem, R.; Geraghty, D.F.; Turner-Foster, A.C.; Lipson, M.; Gaeta, A.L. Silicon-Chip-Based Ultrafast Optical Oscilloscope. Nature 2008, 456, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Xi, K.; Yu, Y.; Tang, H.-T.; Zhang, C. Microwave Photonic Image-Reject Mixer Based on a Tunable Microwave Photonic Filter with High Rejection. IEEE Photonics J. 2018, 10, 5502411. [Google Scholar] [CrossRef]
Device | Parameter | Title 4 |
---|---|---|
Laser | Linewidth | 10 kHz |
Average power | 10 dBm | |
Frequency | 193.1 THz | |
LO | Frequency | 10 GHz |
Power | 25 dBm | |
MZM | Half-wave voltage | 4 V |
Insertion loss | 5 dB | |
Extinction ratio | 35 dB | |
UDWDM | FSR | 10 GHz |
Bandwidth | 4 GHz | |
Insertion loss | 4 dB | |
EDFA | Gain | 30 dB |
NF | 3 dB | |
PD | Responsivity | 0.65 W/A |
BPF | Central frequency | 1 GHz |
Bandwidth | 20 MHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, A.; Ma, X.; Yu, W.; Liu, Y.; Li, Y.; Xing, G. Broadband Instantaneous Frequency Measurement Using Frequency-to-Time Mapping and Channelization. Photonics 2024, 11, 697. https://doi.org/10.3390/photonics11080697
Li S, Liu A, Ma X, Yu W, Liu Y, Li Y, Xing G. Broadband Instantaneous Frequency Measurement Using Frequency-to-Time Mapping and Channelization. Photonics. 2024; 11(8):697. https://doi.org/10.3390/photonics11080697
Chicago/Turabian StyleLi, Shaobo, Anni Liu, Xiang Ma, Wenqi Yu, Yandan Liu, Yihan Li, and Guansu Xing. 2024. "Broadband Instantaneous Frequency Measurement Using Frequency-to-Time Mapping and Channelization" Photonics 11, no. 8: 697. https://doi.org/10.3390/photonics11080697
APA StyleLi, S., Liu, A., Ma, X., Yu, W., Liu, Y., Li, Y., & Xing, G. (2024). Broadband Instantaneous Frequency Measurement Using Frequency-to-Time Mapping and Channelization. Photonics, 11(8), 697. https://doi.org/10.3390/photonics11080697