Determination of the Effective Lifetime of a Spinor Bose–Einstein Condensate
Abstract
:1. Introduction
2. Experimental Setup and Results
2.1. Lifetime of BECs in an Optical Dipole Trap
2.2. Lifetime of the State in a One-Dimensional Optical Lattice
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weber, T.; Herbig, J.; Mark, M.; Nägerl, H.C.; Grimm, R. Bose-Einstein condensation of cesium. Science 2003, 299, 232–235. [Google Scholar] [CrossRef]
- Takasu, Y.; Maki, K.; Komori, K.; Takano, T.; Honda, K.; Kumakura, M.; Yabuzaki, T.; Takahashi, Y. Spin-singlet Bose-Einstein condensation of two-electron atoms. Phys. Rev. Lett. 2003, 91, 040404. [Google Scholar] [CrossRef] [PubMed]
- Roati, G.; Zaccanti, M.; d’Errico, C.; Catani, J.; Modugno, M.; Simoni, A.; Inguscio, M.; Modugno, G. 39K Bose-Einstein condensate with tunable interactions. Phys. Rev. Lett. 2007, 99, 010403. [Google Scholar] [CrossRef]
- Winkler, K.; Thalhammer, G.; Lang, F.; Grimm, R.; Hecker Denschlag, J.; Daley, A.; Kantian, A.; Büchler, H.; Zoller, P. Repulsively bound atom pairs in an optical lattice. Nature 2006, 441, 853–856. [Google Scholar] [CrossRef] [PubMed]
- Hempel, C.; Maier, C.; Romero, J.; McClean, J.; Monz, T.; Shen, H.; Jurcevic, P.; Lanyon, B.P.; Love, P.; Babbush, R.; et al. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X 2018, 8, 031022. [Google Scholar] [CrossRef]
- Bluvstein, D.; Levine, H.; Semeghini, G.; Wang, T.T.; Ebadi, S.; Kalinowski, M.; Keesling, A.; Maskara, N.; Pichler, H.; Greiner, M.; et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 2022, 604, 451–456. [Google Scholar] [CrossRef]
- Daley, A.J.; Bloch, I.; Kokail, C.; Flannigan, S.; Pearson, N.; Troyer, M.; Zoller, P. Practical quantum advantage in quantum simulation. Nature 2022, 607, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, S.; Pearson, N.; Low, G.H.; Buyskikh, A.; Bloch, I.; Zoller, P.; Troyer, M.; Daley, A.J. Propagation of errors and quantitative quantum simulation with quantum advantage. Quantum Sci. Technol. 2022, 7, 045025. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Tu, B.; Huang, L.; Si, R.; Li, J.; Zhang, M.; Fu, Y.; Zou, Y.; Yao, K. Lifetime measurement of the 3d92D3/2 metastable level in Mo15+ at an electron beam ion trap. Chin. Phys. B 2023, 32, 103201. [Google Scholar] [CrossRef]
- Oates, C.W.; Vogel, K.; Hall, J.L. High precision linewidth measurement of laser-cooled atoms: Resolution of the Na 3p2P3/2 lifetime discrepancy. Phys. Rev. Lett. 1996, 76, 2866. [Google Scholar] [CrossRef] [PubMed]
- Simsarian, J.; Orozco, L.A.; Sprouse, G.; Zhao, W. Lifetime measurements of the 7 p levels of atomic francium. Phys. Rev. A 1998, 57, 2448. [Google Scholar] [CrossRef]
- Gibbons, M.J.; Kim, S.Y.; Fortier, K.M.; Ahmadi, P.; Chapman, M.S. Achieving very long lifetimes in optical lattices with pulsed cooling. Phys. Rev. A-At. Mol. Opt. Phys. 2008, 78, 043418. [Google Scholar] [CrossRef]
- Pelisson, S.; Messina, R.; Angonin, M.C.; Wolf, P. Lifetimes of atoms trapped in an optical lattice in proximity of a surface. Phys. Rev. A-At. Mol. Opt. Phys. 2013, 88, 013411. [Google Scholar] [CrossRef]
- Saglamyurek, E.; Lutz, T.; Veissier, L.; Hedges, M.P.; Thiel, C.W.; Cone, R.L.; Tittel, W. Efficient and long-lived Zeeman-sublevel atomic population storage in an erbium-doped glass fiber. Phys. Rev. B 2015, 92, 241111. [Google Scholar] [CrossRef]
- Magalhães, K.M.F.; De Oliveira, A.; Zanon, R.; Bagnato, V.S.; Marcassa, L.G. Lifetime determination of high excited states of 85Rb using a sample of cold atoms. Opt. Commun. 2000, 184, 385–389. [Google Scholar] [CrossRef]
- Mack, M.; Grimmel, J.; Karlewski, F.; Sárkány, L.; Hattermann, H.; Fortágh, J. All-optical measurement of Rydberg-state lifetimes. Phys. Rev. A 2015, 92, 012517. [Google Scholar] [CrossRef]
- de Oliveira, A.L.; Mancini, M.W.; Bagnato, V.S.; Marcassa, L.G. Measurement of Rydberg-state lifetimes using cold trapped atoms. Phys. Rev. A 2002, 65, 031401. [Google Scholar] [CrossRef]
- Nascimento, V.; Caliri, L.; De Oliveira, A.; Bagnato, V.S.; Marcassa, L.G. Measurement of the lifetimes of S and D states below n = 31 using cold Rydberg gas. Phys. Rev. A—At. Mol. Opt. Phys. 2006, 74, 054501. [Google Scholar] [CrossRef]
- Caliri, L.L.; Marcassa, L.G. Reply to “Comment on ‘Measurement of the lifetimes of S and D states below n = 31 using cold Rydberg gas’”. Phys. Rev. A—At. Mol. Opt. Phys. 2007, 75, 066503. [Google Scholar] [CrossRef]
- Beterov, I.; Ryabtsev, I.; Tretyakov, D.; Entin, V. Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n ≤ 80. Phys. Rev. A—At. Mol. Opt. Phys. 2009, 79, 052504. [Google Scholar] [CrossRef]
- Jing, H.; Ye, S.W.; Dai, C.J. Lifetimes of Rydberg states of Eu atoms. Chin. Phys. B 2015, 24, 013203. [Google Scholar] [CrossRef]
- Heo, M.S.; Wang, T.T.; Christensen, C.A.; Rvachov, T.M.; Cotta, D.A.; Choi, J.H.; Lee, Y.R.; Ketterle, W. Formation of ultracold fermionic NaLi Feshbach molecules. Phys. Rev. A—At. Mol. Opt. Phys. 2012, 86, 021602. [Google Scholar] [CrossRef]
- Jachymski, K.; Gronowski, M.; Tomza, M. Collisional losses of ultracold molecules due to intermediate complex formation. Phys. Rev. A 2022, 106, L041301. [Google Scholar] [CrossRef]
- Schymik, K.N.; Pancaldi, S.; Nogrette, F.; Barredo, D.; Paris, J.; Browaeys, A.; Lahaye, T. Single atoms with 6000-second trapping lifetimes in optical-tweezer arrays at cryogenic temperatures. Phys. Rev. Appl. 2021, 16, 034013. [Google Scholar] [CrossRef]
- Hölzl, C.; Götzelmann, A.; Pultinevicius, E.; Wirth, M.; Meinert, F. Long-lived circular Rydberg qubits of alkaline-earth atoms in optical tweezers. Phys. Rev. X 2024, 14, 021024. [Google Scholar] [CrossRef]
- Zhai, Y.; Yue, X.; Wu, Y.; Chen, X.; Zhang, P.; Zhou, X. Effective preparation and collisional decay of atomic condensates in excited bands of an optical lattice. Phys. Rev. A—At. Mol. Opt. Phys. 2013, 87, 063638. [Google Scholar] [CrossRef]
- Shui, H.; Lai, C.K.; Yu, Z.; Tian, J.; Wu, C.; Chen, X.; Zhou, X. Optimal lattice depth on lifetime of D-band ultracold atoms in a triangular optical lattice. Opt. Express 2023, 31, 26599–26609. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tang, T.; Austin, J.; Shaw, Z.; Zhao, L.; Liu, Y. Quantum quench and nonequilibrium dynamics in lattice-confined spinor condensates. Phys. Rev. Lett. 2019, 123, 113002. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.Y.; Liang, H.Y.; Yang, Y.B.; Yang, H.X.; Tian, T.; Xu, Y.; Duan, L.M. Observation of generalized Kibble-Zurek mechanism across a first-order quantum phase transition in a spinor condensate. Sci. Adv. 2020, 6, eaba7292. [Google Scholar] [CrossRef]
- Guo, S.A.; Wu, Y.K.; Ye, J.; Zhang, L.; Lian, W.Q.; Yao, R.; Wang, Y.; Yan, R.Y.; Yi, Y.J.; Xu, Y.L.; et al. A site-resolved two-dimensional quantum simulator with hundreds of trapped ions. Nature 2024, 630, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Huang, Y.Y.; Wu, Y.K.; Guo, W.X.; Ma, J.Y.; Yang, H.X.; Zhang, L.; Wang, Y.; Huang, C.X.; Zhang, C.; et al. Realization of a crosstalk-avoided quantum network node using dual-type qubits of the same ion species. Nat. Commun. 2024, 15, 204. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Zhang, Z.; Fan, Y.; Yin, G.; Mao, D.; Chen, X.; Xiong, W.; Zhou, X. Atomic transport dynamics in crossed optical dipole trap. Chin. Phys. B 2024, 33, 073701. [Google Scholar] [CrossRef]
- Lewenstein, M.; Sanpera, A.; Ahufinger, V.; Damski, B.; Sen, A.; Sen, U. Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond. Adv. Phys. 2007, 56, 243–379. [Google Scholar] [CrossRef]
- Bloch, I.; Dalibard, J.; Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 2008, 80, 885–964. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, N.; Wang, X.; Xu, J.; Li, Y.; Sovkov, V.B.; Li, P.; Fu, Y.; Wu, J.; Ma, J.; et al. Fast, simple, all-optical production of sodium spinor condensates. J. Phys. B At. Mol. Opt. Phys. 2021, 54, 155501. [Google Scholar] [CrossRef]
- Black, A.T.; Gomez, E.; Turner, L.D.; Jung, S.; Lett, P.D. Spinor dynamics in an antiferromagnetic spin-1 condensate. Phys. Rev. Lett. 2007, 99, 070403. [Google Scholar] [CrossRef]
- Tsui, T.; Wang, Y.; Subhankar, S.; Porto, J.V.; Rolston, S. Realization of a stroboscopic optical lattice for cold atoms with subwavelength spacing. Phys. Rev. A 2020, 101, 041603. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, N.; Jian, J.; Tian, L.; Wu, J.; Li, Y.; Fu, Y.; Li, P.; Sovkov, V.; Ma, J.; et al. Superfluid to Mott-insulator transition in a one-dimensional optical lattice. Chin. Phys. B 2022, 31, 073702. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Qin, Y.; Jian, J.; Liu, W.; Wu, J.; Li, Y.; Sovkov, V.; Ma, J. Determination of the Effective Lifetime of a Spinor Bose–Einstein Condensate. Photonics 2025, 12, 124. https://doi.org/10.3390/photonics12020124
Wang X, Qin Y, Jian J, Liu W, Wu J, Li Y, Sovkov V, Ma J. Determination of the Effective Lifetime of a Spinor Bose–Einstein Condensate. Photonics. 2025; 12(2):124. https://doi.org/10.3390/photonics12020124
Chicago/Turabian StyleWang, Xin, Yong Qin, Jun Jian, Wenliang Liu, Jizhou Wu, Yuqing Li, Vladimir Sovkov, and Jie Ma. 2025. "Determination of the Effective Lifetime of a Spinor Bose–Einstein Condensate" Photonics 12, no. 2: 124. https://doi.org/10.3390/photonics12020124
APA StyleWang, X., Qin, Y., Jian, J., Liu, W., Wu, J., Li, Y., Sovkov, V., & Ma, J. (2025). Determination of the Effective Lifetime of a Spinor Bose–Einstein Condensate. Photonics, 12(2), 124. https://doi.org/10.3390/photonics12020124