Azimuthally Spliced Power-Exponential Phase Modulation for Focal Spot Shaping of Circular Airy Beams
Abstract
:1. Introduction
2. Propagation Characteristics of the Modulated CAB in Free Space
2.1. Theoretical Background
2.2. Results and Discussions
3. Evolution of the Modulated CAB in Tight Focus and Its Trapping-Force Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Efremidis, N.K.; Chen, Z.; Segev, M.; Christodoulides, D.N. Airy beams and accelerating waves An overview of recent advances. Optica 2019, 6, 686–701. [Google Scholar] [CrossRef]
- Siviloglou, G.A.; Broky, J.; Dogariu, A.; Christodoulides, D.N. Observation of Accelerating Airy Beams. Phys. Rev. Lett. 2007, 99, 213901. [Google Scholar] [CrossRef]
- Polynkin, P.; Kolesik, M.; Moloney, J.V.; Siviloglou, G.A.; Christodoulides, D.N. Curved plasma channel generation using ultraintense Airy beams. Science 2009, 324, 229–232. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, Y.-X.; Chen, M.; Arita, Y.; Rosales-Guzmán, C. Optical trapping with structured light: A review. Adv. Photonics 2021, 3, 034001. [Google Scholar] [CrossRef]
- Jia, S.; Vaughan, J.C.; Zhuang, X. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nat. Photonics 2014, 8, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Sohr, D.; Thomas, J.U.; Skupin, S. Shaping convex edges in borosilicate glass by single pass perforation with an Airy beam. Opt. Lett. 2021, 46, 2529–2532. [Google Scholar] [CrossRef]
- Papazoglou, D.G.; Efremidis, N.K.; Christodoulides, D.N.; Tzortzakis, S. Observation of abruptly autofocusing waves. Opt. Lett. 2011, 36, 1842–1844. [Google Scholar] [CrossRef]
- Panagiotopoulos, P.; Papazoglou, D.; Couairon, A.; Tzortzakis, S. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nat. Commun. 2013, 4, 2622. [Google Scholar] [CrossRef]
- Lu, W.; Sun, X.; Chen, H.; Liu, S.; Lin, Z. Abruptly autofocusing property and optical manipulation of circular Airy beams. Phys. Rev. A 2019, 99, 013817. [Google Scholar] [CrossRef]
- Zhang, P.; Prakash, J.; Zhang, Z.; Mills, M.S.; Efremidis, N.K.; Christodoulides, D.N.; Chen, Z. Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett. 2011, 36, 2883–2885. [Google Scholar] [CrossRef]
- Moradi, H.; Jabbarpour, M.; Abdollahpour, D.; Hajizadeh, F. 3D optical trapping by a tightly focused circular airy beam. Opt. Lett. 2022, 47, 4115–4118. [Google Scholar] [CrossRef]
- Wang, J.; Hua, X.; Guo, C.; Liu, W.; Jia, S. Airy-beam tomographic microscopy. Optica 2020, 7, 790–793. [Google Scholar] [CrossRef]
- Ivaškevičiūtė-Povilauskienė, R.; Kizevičius, P.; Nacius, E.; Jokubauskis, D.; Ikamas, K.; Lisauskas, A.; Alexeeva, N.; Matulaitienė, I.; Jukna, V.; Orlov, S.; et al. Terahertz structured light: Nonparaxial Airy imaging using silicon diffractive optics. Light. Sci. Appl. 2022, 11, 326. [Google Scholar] [CrossRef]
- Wen, J.; Chen, L.; Yu, B.; Nieder, J.B.; Zhuang, S.; Zhang, D.; Lei, D. All-Dielectric Synthetic-Phase Metasurfaces Generating Practical Airy Beams. ACS Nano 2021, 15, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yuan, L. Separating radial and azimuthal polarizations of circular Airy vortex beam via uniaxial crystal. Opt. Express 2023, 31, 22507–22518. [Google Scholar] [CrossRef]
- Li, P.; Liu, S.; Peng, T.; Xie, G.; Gan, X.; Zhao, J. Spiral autofocusing Airy beams carrying power-exponent-phase vortices. Opt. Express 2014, 22, 7598–7606. [Google Scholar] [CrossRef]
- Wang, F.W.F.; Lou, C.L.C.; Liang, Y.L.Y. Propagation dynamics of ring Airy Gaussian beams with cosine modulated optical vortices. Chin. Opt. Lett. 2018, 16, 110502. [Google Scholar] [CrossRef]
- Brimis, A.; Makris, K.G.; Papazoglou, D.G. Tornado waves. Opt. Lett. 2020, 45, 280–283. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.-G. Experimental observation and manipulation of optical tornado waves. Opt. Lett. 2022, 47, 2109–2112. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Xu, D.; Mo, Z.; Cai, X.; Huang, H.; Zhang, Y.; Yang, H.; Huang, H.; Wu, Y.; Shui, L.; et al. Generation and control of tornado waves by means of ring swallowtail vortex beams. Opt. Express 2022, 30, 11331–11344. [Google Scholar] [CrossRef]
- Pan, J.; Wang, H.; Shen, Y.; Fu, X.; Liu, Q. Airy coherent vortices: 3D multilayer self-accelerating structured light. Appl. Phys. Lett. 2022, 121, 141102. [Google Scholar] [CrossRef]
- Liu, H.; Pu, H.; Zhang, J.; Jiao, Y.; Xu, R.; Yang, H.; Yuan, L. Investigating the propagation characteristics of modulated circular Airy vortex beam in free space via angular spectrum method. Opt. Commun. 2023, 529, 129087. [Google Scholar] [CrossRef]
- Lin, D.; Tao, S. Generation of auto-focusing vortex beam via segment vortex phase for imaging edge-enhancement. Phys. Scr. 2024, 99, 055517. [Google Scholar] [CrossRef]
- Liu, H.; Teng, C.; Yang, H.; Deng, H.; Xu, R.; Deng, S.; Chen, M.; Yuan, L. Proposed phase plate for superimposed orbital angular momentum state generation. Opt. Express 2018, 26, 14792–14799. [Google Scholar] [CrossRef]
- Liu, H.; Deng, S.; Deng, H.; Xu, R.; Yang, H.; Teng, C.; Zhang, L.; Chen, M.; Yuan, L. Spin-orbital coupling of quadratic-power-exponent-phase vortex beam propagating in a uniaxial crystal. Opt. Express 2019, 28, 216–225. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Pu, H.; Xu, J.; Xu, R.; Yuan, L. Controlling the Abrupt Autofocusing of Circular Airy Vortex Beam via Uniaxial Crystal. Photonics 2022, 9, 943. [Google Scholar] [CrossRef]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A 1959, 253, 358–379. [Google Scholar]
- Aiello, A.; Banzer, P.; Neugebauer, M.; Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photonics 2015, 9, 789–795. [Google Scholar] [CrossRef]
- Harada, Y.; Asakura, T. Radiation forces on a dielectric sphere. Opt. Commun. 1996, 124, 529–541. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Guo, Y.; Zhao, M.; Ye, J.; Xu, R.; Yuan, L. Azimuthally Spliced Power-Exponential Phase Modulation for Focal Spot Shaping of Circular Airy Beams. Photonics 2025, 12, 135. https://doi.org/10.3390/photonics12020135
Liu H, Guo Y, Zhao M, Ye J, Xu R, Yuan L. Azimuthally Spliced Power-Exponential Phase Modulation for Focal Spot Shaping of Circular Airy Beams. Photonics. 2025; 12(2):135. https://doi.org/10.3390/photonics12020135
Chicago/Turabian StyleLiu, Houquan, Yaran Guo, Mantong Zhao, Jingfu Ye, Ronghui Xu, and Libo Yuan. 2025. "Azimuthally Spliced Power-Exponential Phase Modulation for Focal Spot Shaping of Circular Airy Beams" Photonics 12, no. 2: 135. https://doi.org/10.3390/photonics12020135
APA StyleLiu, H., Guo, Y., Zhao, M., Ye, J., Xu, R., & Yuan, L. (2025). Azimuthally Spliced Power-Exponential Phase Modulation for Focal Spot Shaping of Circular Airy Beams. Photonics, 12(2), 135. https://doi.org/10.3390/photonics12020135