High-Efficiency Lithium Niobate Electro-Optic Modulator with Barium Titanate Cladding on Quartz
Abstract
:1. Introduction
2. Principle and Design
2.1. Device Design
2.2. Principle of Improved Modulation Efficiency
2.3. Cladding Structure Optimization
2.4. Bandwidth Estimation and Optimization
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LN | Lithium niobate |
TFLN | Thin-film lithium niobate |
EO | Electro-optic |
BTO | Barium titanate |
MZI | Mach–Zehnder interferometer |
CPW | Coplanar waveguide |
RF | Radio frequency |
Si-LN | Silicon–lithium niobate |
Vπ·L | Half-wave voltage-length product |
References
- Ning, S.; Zhu, H.; Feng, C.; Gu, J.; Jiang, Z.; Ying, Z.; Midkiff, J.; Jain, S.; Hlaing, M.H.; Pan, D.Z.; et al. Photonic-Electronic Integrated Circuits for High-Performance Computing and AI Accelerators. J. Light. Technol. 2024, 42, 7834–7859. [Google Scholar] [CrossRef]
- Ordouie, E.; Jiang, T.; Zhou, T.; Juneghani, F.A.; Eshaghi, M.; Vazimali, M.G.; Fathpour, S.; Jalali, B. Differential phase-diversity electrooptic modulator for cancellation of fiber dispersion and laser noise. Nat. Commun. 2023, 14, 6065. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.-W.; Hong, J.; Qiu, F.; Spring, A.M.; Kashino, T.; Oshima, J.; Ozawa, M.-A.; Nawata, H.; Yokoyama, S. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat. Commun. 2020, 11, 4224. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Gao, Y.; Lin, H.L.; Danner, A.J. Compact and Efficient Thin-Film Lithium Niobate Modulators. Adv. Photonics Res. 2023, 4, 2300229. [Google Scholar] [CrossRef]
- Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.J.; Hu, Y.; Holzgrafe, J.; Ghosh, S.; Shams-Ansari, A.; et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 2021, 13, 242–352. [Google Scholar] [CrossRef]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and Potential of Lithium Niobate on Insulator (TFLN) for Photonic Integrated Circuits. Laser Photonics Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef]
- Turner, E.H. High-Frequency Electro-Optic Coefficients of Lithium Niobate. Appl. Phys. Lett. 1966, 8, 303. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Kharel, P.; Zhu, D.; Lončar, M. Integrated lithium niobate electro-optic modulators: When performance meets scalability. Optica 2021, 8, 652–667. [Google Scholar] [CrossRef]
- Xu, M.; Cai, X. Advances in integrated ultra-wideband electro-optic modulators [Invited]. Opt. Express 2022, 30, 7253–7274. [Google Scholar] [CrossRef]
- Hu, H.; Ricken, R.; Sohler, W.; Wehrspohn, R.B. Lithium niobate ridge waveguides fabricated by wet etching. IEEE Photonics Technol. Lett. 2007, 19, 417–419. [Google Scholar] [CrossRef]
- Ahmed, A.N.R.; Nelan, S.; Shi, S.; Yao, P.; Mercante, A.; Prather, D.W. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. Opt. Lett. 2020, 45, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Weigel, P.O.; Zhao, J.; Fang, K.; Al-Rubaye, H.; Trotter, D.; Hood, D.; Mudrick, J.; Dallo, C.; Pomerene, A.T.; Starbuck, A.L.; et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 2018, 26, 23728–23739. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, G.; Ruan, Z.; Gan, R.; Huang, P.; Zheng, Z.; Lu, L.; Li, J.; Guo, C.; Chen, K.; et al. Silicon-lithium niobate hybrid intensity and coherent modulators using a periodic capacitively loaded traveling-wave electrode. ACS Photonics 2022, 9, 2668–2675. [Google Scholar] [CrossRef]
- Valdez, F.; Mere, V.; Wang, X.; Boynton, N.; Friedmann, T.A.; Arterburn, S.; Dallo, C.; Pomerene, A.T.; Starbuck, A.L.; Trotter, D.C.; et al. 110 GHz, 110 mW hybrid silicon-lithium niobate MachZehnder modulator. Sci. Rep. 2022, 12, 18611. [Google Scholar] [CrossRef] [PubMed]
- Valdez, F.; Mere, V.; Wang, X.; Mookherjea, S. Integrated O- and C-band silicon-lithium niobate Mach-Zehnder modulators with 100 GHz bandwidth, low voltage, and low loss. Opt. Express 2023, 31, 5273–5289. [Google Scholar] [CrossRef] [PubMed]
- Mookherjea, S.; Mere, V.; Valdez, F. Thin-film lithium niobate electro-optic modulators: To etch or not to etch. Appl. Phys. Lett. 2023, 122, 120501. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, Y.; Pittalà, F.; Tang, J.; He, M.; Ng, W.C.; Wang, J.; Ruan, Z.; Tang, X.; Kuschnerov, M.; et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 2022, 9, 61–62. [Google Scholar] [CrossRef]
- Geyer, R.; Krupka, J. Microwave dielectric properties of anisotropic materials at cryogenic temperatures. IEEE Trans. Instrum. Meas. 1995, 44, 329–331. [Google Scholar] [CrossRef]
- Mercante, A.J.; Shi, S.; Yao, P.; Xie, L.; Weikle, R.M.; Prather, D.W. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express 2018, 26, 14810–14816. [Google Scholar] [CrossRef]
- Kharel, P.; Reimer, C.; Luke, K.; He, L.; Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 2021, 8, 357–363. [Google Scholar] [CrossRef]
- Zhu, X.; de Freitas, M.M.; Shi, S.; Mercante, A.; Yao, P.; Wang, F.; Shopp, B.A.; Cullen, C.J.; Prather, D.W. Ultra Wideband Dual-Output Thin Film Lithium Niobate Intensity Modulator. IEEE J. Sel. Top. Quant. 2024, 30, 1–13. [Google Scholar] [CrossRef]
- Ummethala, S.; Kemal, J.N.; Lauermann, M.; Alam, A.S.; Zwickel, H.; Harter, T.; Kutuvantavida, Y.; Hahn, L.; Nandam, S.H.; Elder, D.L.; et al. Capacitively coupled silicon-organic hybrid modulator for 200 Gbit/s PAM-4 signaling. In CLEO: QELS_Fundamental Science; Optica Publishing Group: Scottsdale, Arizona, 2019; p. JTh5B-2. [Google Scholar]
- Ummethala, S.; Kemal, J.N.; Alam, A.S.; Lauermann, M.; Kuzmin, A.; Kutuvantavida, Y.; Nandam, S.H.; Hahn, L.; Elder, D.L.; Dalton, L.R.; et al. Hybrid electro-optic modulator combining silicon photonic slot waveuides with high-k radio-frequency slotlines. Optica 2021, 8, 511–519. [Google Scholar] [CrossRef]
- Weigel, P.O.; Savanier, M.; DeRose, C.T.; Pomerene, A.T.; Starbuck, A.L.; Lentine, A.L.; Stenger, V.; Mookherjea, S. Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics. Sci. Rep. 2016, 6, 22301. [Google Scholar] [CrossRef] [PubMed]
- Honardoost, A.; Safian, R.; Rao, A.; Fathpour, S. High-speed modeling of ultracompact electrooptic modulators. J. Light. Technol. 2018, 36, 5893–5902. [Google Scholar] [CrossRef]
- Chen, N.; Yu, Y.; Lou, K.; Mi, Q.; Chu, T. High-efficiency thin-film lithium niobate modulator with highly confined optical modes. Opt. Lett. 2023, 48, 1602–1605. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Lou, K.; Yu, Y.; He, X.J.; Chu, T. High-Efficiency Electro-Optic Modulator on Thin-Film Lithium Niobate with High-Permittivity Cladding. Laser Photonics Rev. 2023, 17, 2200927. [Google Scholar] [CrossRef]
- He, M.; Xu, M.; Ren, Y.; Jian, J.; Ruan, Z.; Xu, Y.; Gao, S.; Sun, S.; Wen, X.; Zhou, L.; et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 2019, 13, 359–364. [Google Scholar] [CrossRef]
- Park, S. Properties of BaTiO3 Films Sputter Deposited on PET for Pulse Power Capacitors. Ferroelectrics 2013, 457, 97–104. [Google Scholar] [CrossRef]
- Abel, S.; Eltes, F.; Ortmann, J.E.; Messner, A.; Castera, P.; Wagner, T.; Urbonas, D.; Rosa, A.; Gutierrez, A.M.; Tulli, D.; et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 2019, 18, 42–47. [Google Scholar] [CrossRef] [PubMed]
Substrate | Platform | Vπ·L (V·cm) | Vπ (V) | L (mm) | Optical Loss (dB/cm) | 3 dB EO Bandwidth (GHz) | Ref. |
---|---|---|---|---|---|---|---|
Si | Etched LN | 1.2 | 3.0 | 4 | 6.0 | 40 | [27] |
Si | Etched LN | 1.41 | 3.53 | 5 | 1.25 | 67 | [28] |
Si | Si-LN | 3.1 | 6.2 | 5 | 0.6 | 110 | [15] |
Si | Si-LN | 2.5 | 5.1 | 5 | 0.98 | >70 | [29] |
Si | Si-LN | 3.10 | 3.10 | 10 | 0.6 | 70 | [16] |
Si | Si-LN | 2.13 | 1.7 | 12.5 | <0.1 | 70 | [14] |
Quartz | Etched LN | 3.8 | 2.53 | 15 | 7.0 | <40 | [15] |
Quartz | Etched LN | 2.3 | 1.15 | 20 | 1.0 | 180 a | [21] |
Quartz | Etched LN | 2.35 | 1.0 | 23.5 | 2.97 | 140 a | [18] |
Quartz | Etched LN | 2.04 | 1.02 | 20 | <0.1 | 95 | [22] |
Quartz | Si-LN | 1.39 | 1.39 | 10 | 3.2 | 152 | This work a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Li, J.; Zheng, W.; Chen, Z.; Zhang, J.; Qin, Y. High-Efficiency Lithium Niobate Electro-Optic Modulator with Barium Titanate Cladding on Quartz. Photonics 2025, 12, 157. https://doi.org/10.3390/photonics12020157
Liu H, Li J, Zheng W, Chen Z, Zhang J, Qin Y. High-Efficiency Lithium Niobate Electro-Optic Modulator with Barium Titanate Cladding on Quartz. Photonics. 2025; 12(2):157. https://doi.org/10.3390/photonics12020157
Chicago/Turabian StyleLiu, Hongkang, Jianping Li, Weiqin Zheng, Zixin Chen, Jianbo Zhang, and Yuwen Qin. 2025. "High-Efficiency Lithium Niobate Electro-Optic Modulator with Barium Titanate Cladding on Quartz" Photonics 12, no. 2: 157. https://doi.org/10.3390/photonics12020157
APA StyleLiu, H., Li, J., Zheng, W., Chen, Z., Zhang, J., & Qin, Y. (2025). High-Efficiency Lithium Niobate Electro-Optic Modulator with Barium Titanate Cladding on Quartz. Photonics, 12(2), 157. https://doi.org/10.3390/photonics12020157