Non-Uniform Microlens Array Based on Photonic Nanojets for Remote Raman Sensing of Subsurface Analytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Finite Element Simulation
2.3. Three-Dimensional Printing of the Microlens
2.4. Raman Spectrum Acquisition Based on Non-Uniform Microlens Array
2.5. Topological and Optical Characterization of the Microlenses
3. Results
3.1. Optimizing the Microlens Design: Performance Enhancement Through Non-Uniform Configurations
3.2. Universality of the Non-Uniform Microlens Array Design for Rectangular Lenses
3.3. Raman Signal Enhancement Using a Non-Uniform Rectangular Microlens Array
3.4. Morphological Characterization and Focal Length Analysis of the Single Lens and the Non-Uniform Microlens Array
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Xu, Z.; Fang, G.; Li, N.; Hasi, W. SERS combined with self-optimizing machine learning algorithm for quantitative detection of norfloxacin and ciprofloxacin in milk. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 329, 125641. [Google Scholar] [CrossRef]
- Lombardi, J.R. Enhanced by organic surfaces. Nat. Mater. 2017, 16, 878–880. [Google Scholar] [CrossRef]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 2022, 1, 87. [Google Scholar] [CrossRef]
- Li, L.-F.; Zhou, R.; Cui, J.-Q.; Yan, H.-P.; Wang, Z.-Z. Improved uniformity of deposited metallic layer on hybrid micro/nano-structured Si substrates fabricated by two-step laser ablation for SERS application. J. Cent. South Univ. 2022, 29, 3312–3322. [Google Scholar] [CrossRef]
- Yi, J.; You, E.-M.; Hu, R.; Wu, D.-Y.; Liu, G.-K.; Yang, Z.-L.; Zhang, H.; Gu, Y.; Wang, Y.-H.; Wang, X.; et al. Surface-enhanced Raman spectroscopy: A half-century historical perspective. Chem. Soc. Rev. 2025, 54, 1453–1551. [Google Scholar] [CrossRef] [PubMed]
- Kneipp, J.; Seifert, S.; Gärber, F. SERS microscopy as a tool for comprehensive biochemical characterization in complex samples. Chem. Soc. Rev. 2024, 53, 7641–7656. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Aljuhani, W.; Zhang, Y.; Ye, Z.; Li, C.; Bell, S.E.J. A practical approach to quantitative analytical surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2025, 54, 62–84. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; You, E.-M.; Liu, G.-K.; Tian, Z.-Q. AI–nano-driven surface-enhanced Raman spectroscopy for marketable technologies. Nat. Nanotechnol. 2024, 19, 1758–1762. [Google Scholar] [CrossRef]
- Wang, H.-L.; You, E.-M.; Panneerselvam, R.; Ding, S.-Y.; Tian, Z.-Q. Advances of surface-enhanced Raman and IR spectroscopies: From nano/microstructures to macro-optical design. Light Sci. Appl. 2021, 10, 161. [Google Scholar] [CrossRef]
- Yang, Y.; Creedon, N.; O’Riordan, A.; Lovera, P. Surface Enhanced Raman Spectroscopy: Applications in Agriculture and Food Safety. Photonics 2021, 8, 568. [Google Scholar] [CrossRef]
- Vatnik, I.D.; Gorbunov, O.A.; Churkin, D.V. Generation of Narrow Modes in Random Raman Fiber Laser Based on Multimode Fiber. Photonics 2024, 11, 2. [Google Scholar] [CrossRef]
- Yamamoto, Y.S.; Oshima, Y.; Shinzawa, H.; Katagiri, T.; Matsuura, Y.; Ozaki, Y.; Sato, H. Subsurface sensing of biomedical tissues using a miniaturized Raman probe: Study of thin-layered model samples. Anal. Chim. Acta 2008, 619, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Xie, H.; Wu, Z.; Shi, B.; Lin, L.L.; Ye, J. In Vivo Surface-Enhanced Transmission Raman Spectroscopy and Impact of Frozen Biological Tissues on Lesion Depth Prediction. ACS Nano 2024, 18, 35393–35404. [Google Scholar] [CrossRef]
- Valentino, G.M.; Shetty, P.P.; Chauhan, A.; Krogstad, J.A.; Weihs, T.P.; Hemker, K.J. Nanotwin formation in Ni–Mo–W alloys deposited by dc magnetron sputtering. Scr. Mater. 2020, 186, 247–252. [Google Scholar] [CrossRef]
- Park, J.E.; Yonet-Tanyeri, N.; Vander Ende, E.; Henry, A.-I.; Perez White, B.E.; Mrksich, M.; Van Duyne, R.P. Plasmonic Microneedle Arrays for in Situ Sensing with Surface-Enhanced Raman Spectroscopy (SERS). Nano Lett. 2019, 19, 6862–6868. [Google Scholar] [CrossRef]
- Simas, M.V.; Olaniyan, P.O.; Hati, S.; Davis, G.A., Jr.; Anspach, G.; Goodpaster, J.V.; Manicke, N.E.; Sardar, R. Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma. ACS Appl. Mater. Interfaces 2023, 15, 46681–46696. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Jin, L.; Wang, F.; Yang, H.; He, H. Laser transparent multiplexed SERS microneedles for in situ and real-time detection of inflammation. Biosens. Bioelectron. 2023, 225, 115079. [Google Scholar] [CrossRef] [PubMed]
- Fardian-Melamed, N.; Skripka, A.; Ursprung, B.; Lee, C.; Darlington, T.P.; Teitelboim, A.; Qi, X.; Wang, M.; Gerton, J.M.; Cohen, B.E.; et al. Infrared nanosensors of piconewton to micronewton forces. Nature 2025, 637, 70–75. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, Z.; Song, C.; Wu, J.; Liu, Y.; Wu, Y. Topology Optimization-Based Computational Design Methodology for Surface Plasmon Polaritons. Plasmonics 2015, 10, 569–583. [Google Scholar] [CrossRef]
- Veluthandath, A.V.; Murugan, G.S. Photonic Nanojet Generation Using Integrated Silicon Photonic Chip with Hemispherical Structures. Photonics 2021, 8, 586. [Google Scholar] [CrossRef]
- Allen, A.; Waldron, A.; Ottaway, J.; Carter, J.; Angel, S. EXPRESS: Hyperspectral Raman Imaging Using a Spatial Heterodyne Raman Spectrometer with a Microlens Array. Appl. Spectrosc. 2020, 74, 000370282090622. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.-Z.; Li, C.-H.; Chang, Y.-C.; Chen, Y.-F. Optofluidic Accumulation of Silica Beads on Gel-Based Three-Dimensional SERS Substrate To Enhance Sensitivity Using Multiple Photonic Nanojets. ACS Appl. Mater. Interfaces 2023, 15, 31703–31710. [Google Scholar] [CrossRef] [PubMed]
- Fales, A.M.; Strobbia, P.; Vo-Dinh, T.; Ilev, I.K.; Pfefer, T.J. 3D-printed phantoms for characterizing SERS nanoparticle detectability in turbid media. Analyst 2020, 145, 6045–6053. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.-X.; Frueh, J.; Zhang, Z.; Rutkowski, S.; Zhou, Y.; Mao, H.; Kong, C.; Tverdokhlebov, S.I.; Liu, W.; Wong, K.K.Y.; et al. Topologically protected optical pulling force on synthetic particles through photonic nanojet. Nanophotonics 2024, 13, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Uma, S.; Jayesh, G.; Gokul, N.; Basudev, R. Optical trapping with photonic nanojets using various sized polystyrene spheres yields two different regimes. In Proceedings of the SPIE Photonics Europe, Strasbourg, France, 7–12 April 2024; p. 129910U. [Google Scholar]
- Ma, L.; Gu, G.; Zhang, Y.; Yang, H. A Simulation Study of Photonic Nanojet Generated by a Combination of a Dielectric Microsphere and a Hemisphere Lens. In Proceedings of the 2022 Asia Communications and Photonics Conference (ACP), Shenzhen, China, 5–8 November 2022; pp. 1995–1997. [Google Scholar]
- Gašparić, V.; Ristić, D.; Gebavi, H.; Ivanda, M. Resolution and signal enhancement of Raman mapping by photonic nanojet of a microsphere. Appl. Surf. Sci. 2021, 545, 149036. [Google Scholar] [CrossRef]
- Dantham, V.R.; Bisht, P.B.; Namboodiri, C.K.R. Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere. J. Appl. Phys. 2011, 109, 103103. [Google Scholar] [CrossRef]
- Das, G.M.; Laha, R.; Dantham, V.R. Photonic nanojet-mediated SERS technique for enhancing the Raman scattering of a few molecules. J. Raman Spectrosc. 2016, 47, 895–900. [Google Scholar] [CrossRef]
- Das, G.M.; Ringne, A.B.; Dantham, V.R.; Easwaran, R.K.; Laha, R. Numerical investigations on photonic nanojet mediated surface enhanced Raman scattering and fluorescence techniques. Opt. Express 2017, 25, 19822–19831. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Wang, Y.; Guo, J.; Liu, X.; Wang, X. Near-Field Nano-Focusing and Nano-Imaging of Dielectric Microparticle Lenses. Nanomaterials 2024, 14, 1974. [Google Scholar] [CrossRef]
- Heifetz, A.; Simpson, J.J.; Kong, S.-C.; Taflove, A.; Backman, V. Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere. Opt. Express 2007, 15, 17334–17342. [Google Scholar] [CrossRef] [PubMed]
- Maslov, A.V.; Astratov, V.N. Resolution and Reciprocity in Microspherical Nanoscopy: Point-Spread Function Versus Photonic Nanojets. Phys. Rev. Appl. 2019, 11, 064004. [Google Scholar] [CrossRef]
- Chai, K.; Dzulqurnain, D.D.B.; Su’ait, M.S.; Ahmad, A.; Ataollahi, N.; Lee, T.K. Real-Time Raman Spectroscopy of Photopolymerization Dynamics in Ethylene Glycol Methyl Ether Acrylate-g-Epoxidized Natural Rubber. ACS Appl. Polym. Mater. 2025, 7, 1771–1783. [Google Scholar] [CrossRef]
- Li, C.; Huang, Y.; Lai, K.; Rasco, B.A.; Fan, Y. Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control 2016, 65, 99–105. [Google Scholar] [CrossRef]
- Li, R.; Jiao, Y.; Tang, H.; Shi, Z.; Zhang, Y.; Xiao, L. Photonic Nanojet Generated by a Coated Hemisphere with Tunable Core. In Proceedings of the 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xi’an, China, 16–19 August 2024; pp. 1–3. [Google Scholar]
- Huang, C.; Li, D.; He, T.; Peng, Y.; Zhou, W.; Yang, Z.; Xu, J.; Wang, Q. Large Quadratic Electro-Optic Effect of the PLZT Thin Films for Optical Communication Integrated Devices. ACS Photonics 2020, 7, 3166–3176. [Google Scholar] [CrossRef]
- Keiichi, N. Epitaxial PLZT waveguide technologies for integrated photonics. In Proceedings of the Integrated Optoelectronic Devices 2005, San Jose, CA, USA, 22–27 January 2005; pp. 34–43. [Google Scholar]
- Wang, M.; Yan, Y.; Zhao, C.; Jiang, Y. Laser Parallel Nanofabrication of Dual-Au-Nanoholes on Microsphere-Lens-Array for Polarization-Dependent SERS. Adv. Mater. Technol. 2024, 9, 2302244. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.-Y.; Lin, H.-Y.; Ye, W.-D.; You, E.-M.; Liu, J. Non-Uniform Microlens Array Based on Photonic Nanojets for Remote Raman Sensing of Subsurface Analytes. Photonics 2025, 12, 180. https://doi.org/10.3390/photonics12030180
Li X-Y, Lin H-Y, Ye W-D, You E-M, Liu J. Non-Uniform Microlens Array Based on Photonic Nanojets for Remote Raman Sensing of Subsurface Analytes. Photonics. 2025; 12(3):180. https://doi.org/10.3390/photonics12030180
Chicago/Turabian StyleLi, Xiang-Yu, Han-Yu Lin, Wen-Ding Ye, En-Ming You, and Jing Liu. 2025. "Non-Uniform Microlens Array Based on Photonic Nanojets for Remote Raman Sensing of Subsurface Analytes" Photonics 12, no. 3: 180. https://doi.org/10.3390/photonics12030180
APA StyleLi, X.-Y., Lin, H.-Y., Ye, W.-D., You, E.-M., & Liu, J. (2025). Non-Uniform Microlens Array Based on Photonic Nanojets for Remote Raman Sensing of Subsurface Analytes. Photonics, 12(3), 180. https://doi.org/10.3390/photonics12030180