Research on Single-Shot Wrapped Phase Extraction Using SEC-UNet3+
Abstract
:1. Introduction
2. Theories and Methods
2.1. Principle of Multi-Step Phase-Shifting Method
2.2. Construction of Dataset
2.3. Network Architecture Design for SEC-UNet3+
3. Experiments
3.1. Experimental Environment and Network Parameter Settings
3.2. Evaluation Index
3.3. Ablation Study
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques. Opt. Lasers Eng. 2010, 48, 149–158. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, L.; Zuo, C.; Tao, T.; Chen, Q.; Gu, G. High dynamic range 3d measurements with fringe projection profilometry: A review. Meas. Sci. Technol. 2018, 29, 122001. [Google Scholar] [CrossRef]
- Wan, Y.; Cao, Y.; Liu, X.; Tao, T.; Kofman, J. High-frequency color-encoded fringe-projection profilometry based on geometry constraint for large depth range. Opt. Express. 2020, 28, 13043–13058. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Wang, Z.; Huang, J.; Xue, Q.; Gao, J. Improving the quality of stripes in structured-light three-dimensional profile measurement. Opt. Eng. 2017, 56, 031208. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, Q.; Li, C.; Lang, W.; Wang, M.; Hu, Y. 3D face profilometry based on galvanometer scanner with infrared fringe projection in high speed. Appl. Sci. 2019, 9, 1458. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Q.; Li, Q.; Wu, Z.; Chen, C.; Xu, J.; Xue, J. Research on morphology detection of metal additive manufacturing process based on fringe projection and binocular vision. Appl. Sci. 2022, 12, 9232. [Google Scholar] [CrossRef]
- Meza, J.; Simarra, P.; Contreras-Ojeda, S.; Romere, L.A.; Contreras-Ortiz, S.H.; Cosío, F.A.; Marrugo, A.G. A low-cost multi-modal medical imaging system with fringe projection profilometry and 3D freehand ultrasound. In Proceedings of the 15th International Symposium on Medical Information Processing and Analysis, Medelin, Colombia, 6–8 November 2019; pp. 14–26. [Google Scholar] [CrossRef]
- Tan, J.; Niu, H.; Su, W.; He, Z. Structured light 3D shape measurement for translucent media base on deep Bayesian inference. Opt. Laser Technol. 2025, 181, 111758. [Google Scholar] [CrossRef]
- Zuo, C.; Feng, S.; Huang, L.; Tao, T.; Yin, W.; Chen, Q. Phase shifting algorithms for fringe projection profilometry: A review. Opt. Lasers Eng. 2018, 109, 23–59. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y. Triple N-step phase shift algorithm for phase error compensation in fringe projection profilometry. IEEE Trans. Instrum. Meas. 2021, 70, 7006509. [Google Scholar] [CrossRef]
- Wu, H.; Cao, Y.; An, H.; Li, H.; Xu, C.; Yang, N. A novel phase-shifting profilometry to realize temporal phase unwrapping simultaneously with the least fringe patterns. Opt. Lasers Eng. 2022, 153, 107004. [Google Scholar] [CrossRef]
- Wan, Y.; Cao, Y.; Kofman, J. High-accuracy 3D surface measurement using hybrid multi-frequency composite-pattern temporal phase unwrapping. Opt. Express. 2020, 28, 39165–39180. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Mutoh, K. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 1983, 22, 3977–3982. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention, Proceedings of the MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Li, B.; Chen, Z.; Lu, L.; Zhang, L.; Ma, Q.; Hu, H.; Zhai, J.; Li, X. Cascaded frameworks in underwater optical image restoration. Inf. Fusion 2025, 117, 102809. [Google Scholar] [CrossRef]
- Wu, G.; Yang, T.; Liu, F.; Qian, K. Suppressing motion-induced phase error by using equal-step phase-shifting algorithms in fringe projection profilometry. Opt. Express. 2022, 30, 17980–17998. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, G.; Xi, D.; Wu, G. LUT-based phase error compensation method for large-step phase-shifting algorithm in DLP4500-based FPP system. Opt. Express. 2024, 32, 39600–39622. [Google Scholar] [CrossRef]
- Tan, J.; Liu, J.; Wang, X.; He, Z.; Su, W.; Huang, T.; Xie, S. Large depth range binary-focusing projection 3D shape reconstruction via unpaired data learning. Opt. Lasers Eng. 2024, 181, 108442. [Google Scholar] [CrossRef]
- Li, Y.; Qian, J.; Feng, S.; Chen, Q.; Zuo, C. Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement. Opto-Electron. Adv. 2022, 5, 210021. [Google Scholar] [CrossRef]
- van der Jeught, S.; Dirckx, J.J.J. Deep neural networks for single shot structured light profilometry. Opt. Express. 2019, 27, 17091–17101. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yu, J.; Gai, S.; Da, F. Absolute phase retrieval for a single-shot fringe projection profilometry based on deep learning. Opt. Eng. 2021, 60, 064104. [Google Scholar] [CrossRef]
- Nguyen, H.; Novak, E.; Wang, Z. Accurate 3D reconstruction via fringe-to-phase network. Measurement 2022, 190, 110663. [Google Scholar] [CrossRef]
- Spoorthi, G.E.; Gorthi, S.; Gorthi, R.K.S.S. PhaseNet: A deep convolutional neural network for two-dimensional phase unwrapping. IEEE Signal Process Lett. 2018, 26, 54–58. [Google Scholar] [CrossRef]
- Yin, W.; Chen, Q.; Feng, S.; Tao, T.; Huang, L.; Trusiak, M.; Asundi, A.; Zuo, C. Temporal phase unwrapping using deep learning. Sci. Rep. 2019, 9, 20175. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, Y.; Kemao, Q.; Di, J.; Zhao, J. One-step robust deep learning phase unwrapping. Opt. Express. 2019, 27, 15100–15115. [Google Scholar] [CrossRef] [PubMed]
- Yao, P.; Gai, S.; Chen, Y.; Chen, W.; Da, F. A multi-code 3D measurement technique based on deep learning. Opt. Lasers Eng. 2021, 143, 106623. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, L.; Wang, T.; Wang, X.; Du, X.; Hao, R.; Liu, J.; Liu, Y.; Zhang, J. VDE-Net: A two-stage deep learning method for phase unwrapping. Opt. Express. 2022, 30, 39794–39815. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Q. EESANet: Edge-enhanced self-attention network for two-dimensional phase unwrapping. Opt. Express. 2022, 30, 10470–10490. [Google Scholar] [CrossRef]
- Tangy, Y.; Chen, W.; Su, X.; Xiang, L. Neural network applied to reconstruction of complex objects based on fringe projection. Opt. Commun. 2007, 278, 274–278. [Google Scholar] [CrossRef]
- Feng, S.; Chen, Q.; Gu, G.; Tao, T.; Zhang, L.; Hu, Y.; Yin, W.; Zuo, C. Fringe pattern analysis using deep learning. Adv. Photonics 2019, 1, 025001. [Google Scholar] [CrossRef]
- Feng, S.; Zuo, C.; Chen, Q. High-speed 3D measurements at 20,000 Hz with deep convolutional neural networks. In Optical Metrology and Inspection for Industrial Applications VI; SPIE: Hangzhou, China, 2019; pp. 176–183. [Google Scholar] [CrossRef]
- Yang, C.; Yin, W.; Xu, H.; Li, J.; Feng, S.; Tao, T.; Chen, Q.; Zuo, C. Single-shot 3D shape measurement with spatial frequency multiplexing using deep learning. In Optical Metrology and Inspection for Industrial Applications VI; SPIE: Hangzhou, China, 2019; pp. 334–339. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Z.; Li, H.; Li, X.; Zhou, X. Single-shot phase extraction for fringe projection profilometry using deep convolutional generative adversarial network. Meas. Sci. Technol. 2020, 32, 015007. [Google Scholar] [CrossRef]
- Nguyen, H.; Wang, Y.; Wang, Z. Single-shot 3D shape reconstruction using structured light and deep convolutional neural networks. Sensors 2020, 20, 3718. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Xue, J.; Lu, W.; Jia, R.; Xu, Z.; Yu, C. SE-FSCNet: Full-scale connection network for single-shot phase demodulation. Opt. Express. 2024, 32, 15295–15314. [Google Scholar] [CrossRef]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.W.; Wu, J. Unet 3+: A full-scale connected unet for medical image segmentation. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 4–8 May 2020; IEEE: New York, NY, USA, 2020; pp. 1055–1059. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef]
- Zuo, C.; Qian, J.; Feng, S.; Yin, W.; Li, Y.; Fan, P.; Han, J.; Qian, K.; Chen, Q. Deep learning in optical metrology: A review. Light Sci. Appl. 2022, 11, 39. [Google Scholar] [CrossRef]
Layer | Filters | Kernel Size | Stride | Activation | Output Size | |
---|---|---|---|---|---|---|
Input | - | - | - | - | - | 640 × 480 × 1 |
CRSM-1 | Conv | 64 | 3 × 3 | 1 | ReLU | 640 × 480 × 64 |
Conv | 64 | 3 × 3 | 1 | ReLU | 640 × 480 × 64 | |
SEC | - | - | - | - | 640 × 480 × 128 | |
MaxPool | - | 2 × 2 | 2 | - | 320 × 240 × 128 | |
CRSM-2 | Conv | 128 | 3 × 3 | 1 | ReLU | 320 × 240 × 128 |
Conv | 128 | 3 × 3 | 1 | ReLU | 320 × 240 × 128 | |
SEC | - | - | - | - | 320 × 240 × 256 | |
MaxPool | - | 2 × 2 | 2 | - | 160 × 120 × 256 | |
CRSM-3 | Conv | 256 | 3 × 3 | 1 | ReLU | 160 × 120 × 256 |
Conv | 256 | 3 × 3 | 1 | ReLU | 160 × 120 × 256 | |
SEC | - | - | - | - | 160 × 120 × 512 | |
MaxPool | - | 2 × 2 | 2 | - | 80 × 60 × 512 | |
CRSM-4 | Conv | 512 | 3 × 3 | 1 | ReLU | 80 × 60 × 512 |
Conv | 512 | 3 × 3 | 1 | ReLU | 80 × 60 × 512 | |
SEC | - | - | - | - | 80 × 60 × 1024 | |
MaxPool | - | 2 × 2 | 2 | - | 40 × 30 × 1024 | |
Bottleneck | Conv | 1024 | 3 × 3 | 1 | ReLU | 40 × 30 × 1024 |
Conv | 1024 | 3 × 3 | 1 | ReLU | 40 × 30 × 1024 | |
FI | - | - | - | - | - | - |
CBR-4 | Conv | 320 | 3 × 3 | 1 | ReLU | 80 × 60 × 320 |
FI | - | - | - | - | - | |
CBR-3 | Conv | 320 | 3 × 3 | 1 | ReLU | 160 × 120 × 320 |
FI | - | - | - | - | - | - |
CBR-2 | Conv | 320 | 3 × 3 | 1 | ReLU | 320 × 240 × 320 |
FI | - | - | - | - | - | - |
CBR-1 | Conv | 320 | 3 × 3 | 1 | ReLU | 640 × 480 × 320 |
Output | Conv | 2 | 3 × 3 | 1 | - | 640 × 480 × 2 |
Method | Scene1 | Scene2 | Scene3 | ||||||
---|---|---|---|---|---|---|---|---|---|
MSE | MAE | SSIM | MSE | MAE | SSIM | MSE | MAE | SSIM | |
U-Net | 0.1319 | 0.0472 | 0.9505 | 0.0829 | 0.0276 | 0.9703 | 0.1555 | 0.0594 | 0.9413 |
UNet3+ | 0.1197 | 0.0443 | 0.9523 | 0.0689 | 0.0236 | 0.9747 | 0.1537 | 0.0576 | 0.9422 |
SE-UNet3+ | 0.1232 | 0.0449 | 0.9520 | 0.0726 | 0.0245 | 0.9745 | 0.1540 | 0.0575 | 0.9431 |
Ours | 0.1115 | 0.0422 | 0.9568 | 0.0652 | 0.0232 | 0.9761 | 0.1464 | 0.0554 | 0.9455 |
Method | MSE (Rad) | MAE (Rad) | SSIM |
---|---|---|---|
U-Net | 0.1319 | 0.0472 | 0.9505 |
SEC-UNet3+ | 0.1115 | 0.0422 | 0.9568 |
Method | MSE (Rad) | MAE (Rad) | SSIM |
---|---|---|---|
FT | 0.5590 | 0.2105 | 0.8125 |
Ours | 0.1115 | 0.0422 | 0.9568 |
Method | Scene1 | Scene2 | ||||
---|---|---|---|---|---|---|
MSE (Rad) | MAE (Rad) | SSIM | MSE (Rad) | MAE (Rad) | SSIM | |
SE-FSCNet | 0.1003 | 0.0373 | 0.9601 | 0.0719 | 0.0255 | 0.9718 |
Ours | 0.0983 | 0.0366 | 0.9620 | 0.0695 | 0.0249 | 0.9734 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Chen, R.; Xu, Y.; Liu, W.; Guan, W.; Hu, Y.; Huang, X.; Xie, Z. Research on Single-Shot Wrapped Phase Extraction Using SEC-UNet3+. Photonics 2025, 12, 369. https://doi.org/10.3390/photonics12040369
Deng L, Chen R, Xu Y, Liu W, Guan W, Hu Y, Huang X, Xie Z. Research on Single-Shot Wrapped Phase Extraction Using SEC-UNet3+. Photonics. 2025; 12(4):369. https://doi.org/10.3390/photonics12040369
Chicago/Turabian StyleDeng, Lijun, Rui Chen, Yang Xu, Wenxiang Liu, Wenrui Guan, Yiwen Hu, Xingyan Huang, and Zhihua Xie. 2025. "Research on Single-Shot Wrapped Phase Extraction Using SEC-UNet3+" Photonics 12, no. 4: 369. https://doi.org/10.3390/photonics12040369
APA StyleDeng, L., Chen, R., Xu, Y., Liu, W., Guan, W., Hu, Y., Huang, X., & Xie, Z. (2025). Research on Single-Shot Wrapped Phase Extraction Using SEC-UNet3+. Photonics, 12(4), 369. https://doi.org/10.3390/photonics12040369