Enhancing Atmospheric Turbulence Phase Screen Generation with an Improved Diffusion Model and U-Net Noise Generation Network
Abstract
:1. Introduction
2. Fourier Transform-Based Atmospheric Phase Screen Generation
3. Experimental Framework and Diffusion Model Architecture
3.1. Network Architecture
3.2. Loss Function Improvement
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, S.; Gao, C. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photonics Res. 2016, 4, B1–B4. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Lü, Q.-B.; Zhang, W.-X. Simulation for space target interference imaging system distorted by atmospheric turbulence. Acta Phys. Sin. 2012, 61, 124201. [Google Scholar] [CrossRef]
- McGlamery, B.L. Restoration of turbulence-degraded images. J. Opt. Soc. Am. 1967, 57, 293–297. [Google Scholar] [CrossRef]
- Lane, R.G.; Glindemann, A.; Dainty, J.C. Simulation of a Kolmogorov phase screen. Waves Random Media 1992, 2, 209–224. [Google Scholar] [CrossRef]
- Frehlich, R. Simulation of laser propagation in a turbulent atmosphere. Appl. Opt. 2000, 39, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Noll, R.J. Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 1976, 66, 207–211. [Google Scholar] [CrossRef]
- Jin, D.; Wang, X.; Wenbo, J. The atmosphere turbulence simulation based on Zernike polynomial. J. Chang. Univ. Sci. Technol. (Nat. Sci. Ed.) 2010, 33, 60–62. [Google Scholar] [CrossRef]
- Eckert, R.J.; Goda, M.E. Polar phase screens: A comparative analysis with other methods of random phase screen generation. In Proceedings of the Atmospheric Optical Modeling, Measurement, and Simulation II, San Diego, CA, USA, 13–17 August 2006; Volume 6303. [Google Scholar] [CrossRef]
- Wang, Y.; Basu, S. Using an artificial neural network approach to estimate surface-layer optical turbulence at Mauna Loa, Hawaii. Opt. Lett. 2016, 41, 2334–2337. [Google Scholar] [CrossRef] [PubMed]
- Lohani, S.; Glasser, R.T. Turbulence correction with artificial neural networks. Opt. Lett. 2018, 43, 2611–2614. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, Y.; An, Y. A Method for Generating Atmospheric Turbulence Phase Screen Based on Deep Convolutional Generative Adversarial Networks. Laser & Optoelectronics Progress. Available online: https://link.cnki.net/urlid/31.1690.TN.20240320.1523.022 (accessed on 26 February 2025).
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst 2020, 33, 6840–6851. [Google Scholar] [CrossRef]
- Johansson, E.M.; Gavel, D.T. Simulation of stellar speckle imaging. In Proceedings of the Amplitude and Intensity Spatial Interferometry II, Kona, HI, USA, 8–10 March 1994; Volume 2200. [Google Scholar] [CrossRef]
- Roddier, N.A. Atmospheric wavefront simulation using Zernike polynomials. Opt. Eng. 1990, 29, 1174–1180. [Google Scholar] [CrossRef]
- Schmidt, J.D. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB; SPIE Press: Bellingham, WA, USA, 2010. [Google Scholar] [CrossRef]
- Andrews, L.C.; Beason, M.K. Laser Beam Propagation in Random Media: New and Advanced Topics; SPIE Press: Bellingham, WA, USA, 2023. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar] [CrossRef]
- Moore, C.C. Ergodic theorem, ergodic theory, and statistical mechanics. Proc. Natl. Acad. Sci. USA 2015, 112, 1907–1911. [Google Scholar] [CrossRef] [PubMed]
- Sadhukhan, S.; Bhattacharya, S.; Verma, M.K. fastSF: A parallel code for computing the structure functions of turbulence. J. Open Source Softw. 2021, 6, 2185. [Google Scholar] [CrossRef]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. Adv. Neural Inf. Process. Syst. 2017, 30, 6626–6637. [Google Scholar] [CrossRef]
- Barratt, S.; Sharma, R. A note on the inception score. arXiv 2018, arXiv:1801.01973. [Google Scholar] [CrossRef]
Module | Output Size |
---|---|
Input | 1 × 512 × 512 |
DoubleConv | 64 × 512 × 512 |
Down + Self-Attention | 128 × 256 × 256 |
Down + Self-Attention | 256 × 128 × 128 |
Down + Self-Attention | 512 × 64 × 64 |
DoubleConv | 512 × 64 × 64 |
DoubleConv | 512 × 64 × 64 |
DoubleConv | 256 × 64 × 64 |
Up + Self-Attention | 128 × 128 × 128 |
Up + Self-Attention | 64 × 256 × 256 |
Up + Self-Attention | 64 × 512 × 512 |
Conv2d | 1 × 512 × 512 |
Models | Iterations = 0 | Iterations = 10 k | Iterations = 20 k | Iterations = 30 k | Iterations = 40 k | Iterations = 50 k |
---|---|---|---|---|---|---|
DDPM | 145.26 | 86.14 | 82.46 | 77.62 | 73.53 | 74.16 |
Enhanced DDPM | 125.17 | 76.95 | 80.78 | 78.24 | 67.31 | 65.86 |
Ours | 154.45 | 71.19 | 63.61 | 68.15 | 60.45 | 59.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, H.; Wan, M.; Gu, J. Enhancing Atmospheric Turbulence Phase Screen Generation with an Improved Diffusion Model and U-Net Noise Generation Network. Photonics 2025, 12, 381. https://doi.org/10.3390/photonics12040381
Kou H, Wan M, Gu J. Enhancing Atmospheric Turbulence Phase Screen Generation with an Improved Diffusion Model and U-Net Noise Generation Network. Photonics. 2025; 12(4):381. https://doi.org/10.3390/photonics12040381
Chicago/Turabian StyleKou, Hangning, Min Wan, and Jingliang Gu. 2025. "Enhancing Atmospheric Turbulence Phase Screen Generation with an Improved Diffusion Model and U-Net Noise Generation Network" Photonics 12, no. 4: 381. https://doi.org/10.3390/photonics12040381
APA StyleKou, H., Wan, M., & Gu, J. (2025). Enhancing Atmospheric Turbulence Phase Screen Generation with an Improved Diffusion Model and U-Net Noise Generation Network. Photonics, 12(4), 381. https://doi.org/10.3390/photonics12040381