Asymmetry Analysis of the Autler–Townes Doublet in the Trap-Loss Fluorescence Spectroscopy of Cesium MOT with Single-Step Rydberg Excitation
Abstract
:1. Introduction
2. The V-Type Three-Level System with Rydberg State of Cs Atoms
3. Trap-Loss Fluorescence Spectroscopy and AT Doublet in Cs MOT
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gallagher, T.F. Rydberg Atoms; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Browaeys, A.; Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 2020, 16, 132–142. [Google Scholar] [CrossRef]
- Adams, C.S.; Pritchard, J.D.; Shaffer, J.P. Rydberg atom quantum technologies. J. Phys. B At. Mol. Opt. Phys. 2019, 53, 012002. [Google Scholar] [CrossRef]
- Saffman, M.; Walker, T.G.; Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 2010, 82, 2313. [Google Scholar] [CrossRef]
- Phuttitarn, L.; Becker, M.; Chinnarasu, R.; Graham, M.; Saffman, M. Enhanced measurement of neutral-atom qubits with machine learning. Phys. Rev. Appl. 2024, 22, 024011. [Google Scholar] [CrossRef]
- Arias, A.; Lochead, G.; Wintermantel, T.M.; Helmrich, S.; Whitlock, S. Realization of a Rydberg-dressed Ramsey interferometer and electrometer. Phys. Rev. Lett. 2019, 122, 053601. [Google Scholar] [CrossRef]
- Jing, M.Y.; Hu, Y.; Ma, J.; Zhang, H.; Zhang, L.J.; Xiao, L.T.; Jia, S.T. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys. 2020, 16, 911–915. [Google Scholar] [CrossRef]
- Bai, J.D.; Liu, S.; Wang, J.Y.; He, J.; Wang, J.M. Single-photon Rydberg excitation and trap-loss spectroscopy of cold cesium atoms in a magneto-optical trap by using of a 319-nm ultraviolet laser system. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1600106. [Google Scholar] [CrossRef]
- Anderson, D.A.; Miller, S.A.; Raithel, G.; Gordon, J.A.; Butler, M.L.; Holloway, C.L. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell. Phys. Rev. Appl. 2016, 5, 034003. [Google Scholar] [CrossRef]
- Kumar, S.; Fan, H.Q.; Kübler, H.; Jahangiri, A.J.; Shaffer, J.P. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells. Opt. Express 2017, 25, 8625–8637. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Y.W.; Zhang, X.C.; Jin, S.C.; Wang, T.R.; Jiang, L.; Xiao, L.T.; Jia, S.T.; Xiao, Y.H. Machine learning assisted vector atomic magnetometry. Nat. Commun. 2023, 14, 6105. [Google Scholar] [CrossRef]
- Boninsegni, M.; Prokof’ev, N.V. Colloquium: Supersolids: What and where are they? Rev. Mod. Phys. 2012, 84, 759. [Google Scholar] [CrossRef]
- Glaetzle, A.W.; Dalmonte, M.; Nath, R.; Gross, C.; Bloch, I.; Zoller, P. Designing frustrated quantum magnets with laser dressed Rydberg atoms. Phys. Rev. Lett. 2015, 114, 173002. [Google Scholar] [CrossRef] [PubMed]
- Gil, L.I.R.; Mukherjee, R.; Bridge, E.M.; Jones, M.P.A.; Pohl, T. Spin squeezing in a Rydberg lattice clock. Physical Rev. Lett. 2014, 112, 103601. [Google Scholar] [CrossRef]
- Lee, J.; Martin, M.J.; Jau, Y.Y.; Keating, T.; Deutsch, T.H.; Biedermann, G.W. Demonstration of the Jaynes–Cummings ladder with Rydberg-dressed atoms. Phys. Rev. A 2017, 95, 041801(R). [Google Scholar] [CrossRef]
- Jau, Y.Y.; Hankin, A.M.; Keating, T.; Deutsch, T.H.; Biedermann, G.W. Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nat. Phys. 2016, 12, 71–74. [Google Scholar] [CrossRef]
- Aulter, S.H.; Townes, C.H. Stark effect in rapidly varying fields. Phys. Rev. 1955, 100, 703–723. [Google Scholar]
- Zhang, H.; Wang, L.M.; Chen, J.; Li, H.; Bao, S.X.; Zhang, L.J.; Zhao, J.M.; Jia, S.T. Autler-Townes splitting of a cascade system in ultracold cesium Rydberg atoms. Phys. Rev. A 2013, 87, 033835. [Google Scholar] [CrossRef]
- Ahmed, E.H.; Ingram, S.; Kirova, T.; Salihoglu, O.; Huennekens, J.; Qi, J.; Guan, Y.; Lyyra, A.M. Quantum control of the spin–orbit interaction using the Autler-Townes effect. Phys. Rev. Lett. 2011, 107, 163601. [Google Scholar] [CrossRef]
- Wang, X.; Hou, X.K.; Lu, F.F.; Chang, R.; Hao, L.L.; Su, W.J.; Bai, J.D.; He, J.; Wang, J.M. Autler–townes doublet in the trap-loss fluorescence spectroscopy due to single-step direct Rydberg excitation of cesium cold atomic ensemble. AIP Adv. 2023, 13, 035126. [Google Scholar] [CrossRef]
- Cao, Y.F.; Yang, W.G.; Zhang, H.; Jing, M.Y.; Li, W.B.; Zhang, L.J.; Xiao, L.T.; Jia, S.T. Dephasing effect of Rydberg states on trap loss spectroscopy of cold atoms. J. Opt. Soc. Am. B 2022, 39, 2032–2036. [Google Scholar] [CrossRef]
- Zhang, L.S.; Feng, X.M.; Li, X.W.; Li, H.; Fu, G.S. The asymmetry of the Autler–Townes doublet in a three-level system. Chin. Phys. 2004, 13, 348–352. [Google Scholar]
- Halter, C.; Miethke, A.; Sillus, C.; Hegde, A.; Göerlitz, A. Trap-loss spectroscopy of Rydberg states in ytterbium. J. Phys. B At. Mol. Opt. Phys. 2023, 56, 055001. [Google Scholar] [CrossRef]
- Wang, J.Y.; Bai, J.D.; He, J.; Wang, J.M. Realization and characterization of single-frequency tunable 637.2 nm high-power laser. Opt. Commun. 2016, 370, 150–155. [Google Scholar] [CrossRef]
- Wang, J.Y.; Bai, J.D.; He, J.; Wang, J.M. Development and characterization of a 2.2 W narrow-linewidth 318.6 nm ultraviolet laser. J. Opt. Soc. Am. B 2016, 33, 2020–2025. [Google Scholar] [CrossRef]
- Bai, J.D.; Wang, J.Y.; He, J.; Wang, J.M. Electronic sideband locking of a broadly tunable 318.6 nm ultraviolet laser to an ultra-stable optical cavity. J. Opt. 2017, 19, 045501. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database; Version 5.12; NIST: Gaithersburg, MD, USA, 2024. Available online: https://physics.nist.gov/asd (accessed on 12 November 2024).
- Robinson, M.P.; Tolra, B.L.; Noel, M.W.; Gallagher, T.F.; Pillet, P. Spontaneous evolution of Rydberg atoms into an ultracold plasma. Phys. Rev. Lett. 2000, 85, 4466–4469. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Wang, Y.; He, J.; Wang, J. Asymmetry Analysis of the Autler–Townes Doublet in the Trap-Loss Fluorescence Spectroscopy of Cesium MOT with Single-Step Rydberg Excitation. Photonics 2025, 12, 412. https://doi.org/10.3390/photonics12050412
Hou X, Wang Y, He J, Wang J. Asymmetry Analysis of the Autler–Townes Doublet in the Trap-Loss Fluorescence Spectroscopy of Cesium MOT with Single-Step Rydberg Excitation. Photonics. 2025; 12(5):412. https://doi.org/10.3390/photonics12050412
Chicago/Turabian StyleHou, Xiaokai, Yuewei Wang, Jun He, and Junmin Wang. 2025. "Asymmetry Analysis of the Autler–Townes Doublet in the Trap-Loss Fluorescence Spectroscopy of Cesium MOT with Single-Step Rydberg Excitation" Photonics 12, no. 5: 412. https://doi.org/10.3390/photonics12050412
APA StyleHou, X., Wang, Y., He, J., & Wang, J. (2025). Asymmetry Analysis of the Autler–Townes Doublet in the Trap-Loss Fluorescence Spectroscopy of Cesium MOT with Single-Step Rydberg Excitation. Photonics, 12(5), 412. https://doi.org/10.3390/photonics12050412