Optical Link Design for Quantum Key Distribution-Integrated Optical Access Networks
Abstract
:1. Introduction
2. High-Speed PON
2.1. Towards a Beyond-10G-Class TDM-PON
PON Standard | DS Wavelength (nm) | US Wavelength (nm) |
---|---|---|
GPON (ITU-T G.984) [26] | 1480–1500 | 1290–1330 |
EPON (IEEE 802.3ah) [27] | 1480–1500 | 1260–1360 |
XG-PON1 (ITU-T G.987) [28] | 1575–1580 | 1260–1280 |
XGS-PON (ITU-T G.9807.1) [10] | 1575–1580 | 1260–1280 |
25G EPON (IEEE 802.3ca) [29] | 1340–1342, 1358–1360 | 1260–1280, 1290–1310, 1319–1321 |
50G PON (ITU-T G.9804) [11] | 1340–1344 | 1260–1280, 1290–1310 |
NG-PON2 (ITU-T G.989) [30] | 1596–1603 | 1524–1544 |
2.2. WDM- and TWDM-PON
3. Case Study on QKD in P2MP Topology
3.1. Time-Bin-Encoded Discrete-Variable (DV)-QKD with GPON
- -
- Total fiber length (feeder + drop fiber): 20 km;
- -
- Launched DS GPON signal: −3 dBm;
- -
- Number of ONUs: 8;
- -
- Use of single photon detector (SPD) operating at 1 GHz with 26% efficiency.
3.2. CV-QKD with PONs
4. Integration of CV-QKD Protocol in OANs
4.1. Architecture for DS CV-QKD-Integrated PONs
4.2. CV-QKD Implementation Technique
4.2.1. LO or Pilot
4.2.2. Laser Source
4.2.3. Modulation and Modulator
4.2.4. Polarization Tracking or Demultiplexing
4.2.5. Optical Receiver
4.3. Cost-Effective CV-QKD Implementation Integrated with OAN
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wey, J. The outlook for PON standardization: A tutorial. J. Lightwave Technol. 2020, 38, 31–42. [Google Scholar] [CrossRef]
- Nesset, D. NG-PON2 Technology and Standards. J. Lightwave Technol. 2015, 33, 1136–1143. [Google Scholar] [CrossRef]
- Houtsma, V.; van Veen, D.; Harstead, E. Recent progress on standardization of next-generation 25, 50, and 100G EPON. J. Lightwave Technol. 2017, 35, 1228–1234. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, D.; Wu, X.; Nesset, D. Progress of ITU-T higher speed passive optical network (50G-PON) standardization. J. Opt. Commun. Netw. 2020, 12, D99–D108. [Google Scholar] [CrossRef]
- Houtsma, V.; Mahadevan, A.; Kaneda, N.; van Veen, D. Transceiver technologies for passive optical networks: Past, present, and future. J. Opt. Commun. Netw. 2021, 13, A44–A55. [Google Scholar] [CrossRef]
- Zhu, Y.; Yi, L.; Yang, B.; Huang, X.; Wey, J.; Ma, Z.; Hu, W. Comparative study of cost-effective coherent and direct detection schemes for 10 Gb/s/λ PON. J. Opt. Commun. Netw. 2020, 12, D36–D47. [Google Scholar] [CrossRef]
- Che, Y.; Kim, H. Cost-effective C-band 50-Gb/s PON implemented by using a 2-bit DAC and linear electrical equalizer. IEEE Photonics Technol. Lett. 2023, 35, 215–218. [Google Scholar] [CrossRef]
- Moon, S.-R.; Bae, S. Coherent-lite PON with repetition code and single polarization receiver. Opt. Comm. 2024, 557, 130331–130336. [Google Scholar] [CrossRef]
- Zavitsanos, D.; Ntanos, A.; Stathopoulos, T.; Raptakis, A.; Setaki, F.; Lyberopoulos, G.; Kouloumentas, C.; Giannoulis, G.; Avramopoulos, H. Feasibility analysis of QKD integration in real-world FTTH access networks. J. Lightwave Technol. 2024, 42, 4–11. [Google Scholar] [CrossRef]
- ITU-T G.9807.1; 10-Gigabit-Capable Symmetric Passive Optical Network (XGS-PON). ITU: Geneva, Switzerland, 2023.
- ITU-T G.9804.1; Higher Speed Passive Optical Networks: Requirements. ITU: Geneva, Switzerland, 2019.
- ITU-T G.Sup64 Supplement; PON Transmission Technologies Above 10 Gbit/s Per Wavelength. ITU: Geneva, Switzerland, 2018.
- Atan, F.; Zulkifli, N.; Idrus, S.; Ismail, N.; Zin, A.; Ramli, A.; Yusoff, N. Security enhanced dynamic bandwidth allocation algorithm against degradation attacks in next generation passive optical networks. J. Opt. Commun. Netw. 2021, 13, 301–311. [Google Scholar] [CrossRef]
- Frohlich, B.; Dynes, J.; Lucamarini, M.; Sharpe, A.; Yuan, Z.; Shields, A. A quantum access network. Nature 2013, 501, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhao, Y.; Wang, Q.; Zhang, J.; Ng, S.X.; Hanzo, L. The Evolution of Quantum Key Distribution Networks: On the Road to the Qinternet. IEEE Commun. Surv. Tutor. 2022, 24, 839–894. [Google Scholar] [CrossRef]
- Ntanos, A.; Zavitsanos, D.; Giannoulis, G.; Avramopoulos, H. QKD in Support of Secured P2P and P2MP Key Exchange for Low-Latency 5G Connectivity. In Proceedings of the 2020 IEEE 3rd 5G World Forum (5GWF), Bangalore, India, 10–12 September 2020; pp. 157–162. [Google Scholar]
- Chowdhury, A.; Karmakar, G.; Kamruzzaman, J.; Jolfaei, A.; Das, R. Attacks on Self-Driving Cars and Their Countermeasures: A Survey. IEEE Access 2020, 8, 207308–207342. [Google Scholar] [CrossRef]
- Fayad, A.; Cinkler, T.; Rak, J. Toward 6G Optical Fronthaul: A Survey on Enabling Technologies and Research Perspectives. IEEE Commun. Surv. Tutor. 2025, 27, 629–666. [Google Scholar] [CrossRef]
- Effenberger, F.J.; Zhang, D. WDM-PON for 5G Wireless Fronthaul. IEEE Wirel. Commun. 2022, 29, 94–99. [Google Scholar] [CrossRef]
- Chung, H.; Lee, H.H.; Kim, K.O.; Doo, K.-H.; Ra, Y.; Park, C. TDM-PON-Based Optical Access Network for Tactile Internet, 5G, and Beyond. IEEE Netw. 2022, 36, 76–81. [Google Scholar] [CrossRef]
- Shor, P.W.; Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 2000, 85, 441–444. [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 2002, 5, 057902. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, T.; Hirano, T.; Puttnam, B.; Rademacher, G.; Luis, R.; Fujiwara, M.; Namiki, R.; Awaji, Y.; Takeoka, M.; Wada, N.; et al. Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels. Commun. Phys. 2019, 2, 9. [Google Scholar] [CrossRef]
- 10 Gb/s Ethernet Passive Optical Network. IEEE P802.3av Task Force. Available online: https://www.ieee802.org/3/av/ (accessed on 14 October 2009).
- Harstead, E.; Powell, B. 25G/50G/100G EPON Architectures: 1+3 vs. 1+4. Presented at the IEEE 802.3CA Meeting, Fort Worth TX, USA, 13–15 September 2016. Available online: https://www.ieee802.org/3/ca/public/meeting_archive/2016/09/harstead_3ca_1a_0916.pdf (accessed on 13 September 2016).
- G.984.2; Gigabit-Capable Passive Optical Networks (GPON): Physical Media Dependent (PMD) Layer Specification. ITU-T: Geneva, Switzerland, 2008. Available online: https://www.itu.int/rec/T-REC-G.984.2-201908-I/en (accessed on 22 April 2025).
- IEE P802.3ah; Ethernet in the First Mile Task Force. IEEE: Piscataway, NJ, USA, 2011. Available online: https://www.ieee802.org/3/efm/ (accessed on 22 April 2025).
- G.987.2; 10-Gigabit-Capable Passive Optical Networks (XG-PON): Physical Media Dependent (PMD) Layer Specification. ITU-T: Geneva, Switzerland, 2023. Available online: https://www.itu.int/rec/T-REC-G.987.2/en (accessed on 22 April 2025).
- IEEE 802.3ca; IEEE Standard for Ethernet Amendment 9. IEEE: Piscataway, NJ, USA, 2020. Available online: https://standards.ieee.org/ieee/802.3ca/7440/ (accessed on 22 April 2025).
- G.989.2; 40-Gigabit-Capable Passive Optical Networks 2 (NG-PON2): Physical Media Dependent (PMD) Layer Specification. ITU-T: Geneva, Switzerland, 2019. Available online: https://www.itu.int/rec/T-REC-G.989.2/en (accessed on 22 April 2025).
- Bonk, R.; Geng, D.; Khotimsky, D.; Liu, D.; Liu, X.; Luo, Y.; Nesset, D.; Oksman, V.; Strobel, R.; Hoof, W.; et al. 50G-PON: The First ITU-T Higher-Speed PON System. IEEE Comm. Mag. 2022, 60, 48–54. [Google Scholar] [CrossRef]
- Shim, H.; Kim, H.; Chung, Y. Effects of Electrical and Optical Equalizations in 28-Gb/s RSOA-Based WDM PON. IEEE Photon. Technol. Lett. 2016, 28, 2537–2540. [Google Scholar] [CrossRef]
- Wey, J.; Nesset, D.; Valvo, M.; Grobe, K.; Roberts, H.; Luo, Y.; Smith, J. Physical layer aspects of NG-PON2 standards—Part 1: Optical link design. J. Opt. Commun. Netw. 2020, 8, 33–42. [Google Scholar] [CrossRef]
- Townsend, P.; Rarity, J.; Tapster, P. Single photon interference in 10 km long optical fibre interferometer. Electron. Lett. 1993, 29, 634–635. [Google Scholar] [CrossRef]
- Stucki, D.; Brunner, N.; Gisin, N.; Scarani, V.; Zbinden, H. Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 2005, 87, 194108–194111. [Google Scholar] [CrossRef]
- Frohlich, B.; Dynes, J.; Lucamarini, M.; Sharpe, A.; Tam, S.; Yuan, Z.; Shields, A. Quantum secured gigabit optical access networks. Sci. Rep. 2016, 5, 18121. [Google Scholar] [CrossRef]
- Patel, K.; Dynes, J.; Choi, I.; Sharpe, A.; Dixon, A.; Yuan, Z.; Penty, R.; Shields, A. Coexistence of high-bit-rate quantum key distribution and data on optical fiber. Phys. Rev. X 2012, 2, 041010. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, T.; Wang, X.; Chen, Z.; Xu, B.; Yu, S.; Guo, H. Realizing a downstream-access network using continuous-variable quantum key distribution. Phys. Rev. Appl. 2021, 16, 064051. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Pirandola, S.; Wang, X.; Zhou, C.; Chu, B.; Zhao, Y.; Xu, B.; Yu, S.; Guo, H. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 2020, 125, 010502. [Google Scholar] [CrossRef]
- Lodewyck, J.; Bloch, M.; Patron, R.; Fossier, S.; Karpov, E.; Diamanti, E.; Debuisschert, T.; Cerf, N.; Brouri, R.; McLaughlin, S.; et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 2007, 76, 042305. [Google Scholar] [CrossRef]
- Kumar, R.; Qin, H.; Alleaume, R. Coexistence of continuous variable QKD with intense DWDM classical channels. New J. Phys. 2015, 17, 043027. [Google Scholar] [CrossRef]
- Eriksson, T.; Luis, R.; Puttnam, B.; Rademacher, G.; Fujiwara, M.; Awaji, Y.; Furukawa, H.; Wada, N.; Takeoka, M.; Sasaki, M. Wavelength division multiplexing of 194 continuous variable quantum key distribution channels. J. Lightwave Technol. 2020, 38, 2214–2218. [Google Scholar] [CrossRef]
- Ren, S.; Yang, S.; Wonfor, A.; White, I.; Penty, R. Demonstration of high-speed and low-complexity continuous variable quantum key distribution system with local local oscillator. Sci. Rep. 2021, 11, 9454. [Google Scholar] [CrossRef] [PubMed]
- Jouget, P.; Jacques, S.; Leverrier, A.; Grangier, P. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 2013, 14, 378–381. [Google Scholar] [CrossRef]
- Huang, D.; Lin, D.; Wang, C.; Liu, W.; Fang, S.; Peng, J.; Huang, P.; Zeng, G. Continuous-variable quantum key distribution with 1 Mbps secure key rate. Opt. Express 2015, 23, 17511–17519. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Pi, Y.; Pan, Y.; Shao, Y.; Ma, L.; Zhang, Y.; Yang, J.; Zhang, T.; Huang, W.; et al. Sub-Gbps key rate four-state continuous-variable quantum key distribution within metropolitan area. Commun. Phys. 2022, 5, 162. [Google Scholar] [CrossRef]
- Pereira, D.; Almeida, M.; Facao, M.; Pinto, A.; Silva, N. Probabilistic shaped 128-APSK CV-QKD transmission system over optical fibres. Opt. Lett. 2022, 47, 3948–3951. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Chin, H.-M.; Mani, H.; Lupo, C.; Nikolic, D.S.; Kordts, A.; Pirandola, S.; Pedersen, T.B.; Kolb, M.; Ömer, B.; et al. Practical continuous-variable quantum key distribution with composable security. Nat. Commun. 2022, 13, 4740. [Google Scholar] [CrossRef]
- Zhang, Y.; Bian, Y.; Li, Z.; Yu, S.; Guo, H. Continuous-variable quantum key distributionsystem: Past, present, and future. Appl. Phys. Rev. 2024, 11, 011318. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Li, X.; Li, Y. Generation of stable and high extinction ratio light pulses for continuous variable quantum key distribution. IEEE J. Quantum Electron. 2015, 51, 5200206. [Google Scholar] [CrossRef]
- Winzer, P.; Essiambre, R.-J. Advanced optical modulation formats. Proc. IEEE 2006, 94, 952–985. [Google Scholar] [CrossRef]
- Weedbrook, C.; Lance, A.; Bowen, W.; Symul, T.; Ralph, T.; Lam, P. Quantum cryptography without switching. Phys. Rev. Lett. 2004, 93, 170504. [Google Scholar] [CrossRef] [PubMed]
Authors | Laser | Modulation | LO/Pilot (Multiplexing) | Distance (km) | Polarization Tracking | Optical Receiver | SKR |
---|---|---|---|---|---|---|---|
J. Lodewyck et al. [40] | Pulse (350 kHz) | Gaussian (AM+PM) | TLO (TDM+PDM) | 25 | MPC | Homodyne | 20 kbps |
P. Jouget et al. [44] | Pulse (1 MHz) | Gaussian (AM+PM) | TLO (TDM+PDM) | 80 | DPC | Homodyne | 0.2 kbps |
D. Huang et al. [45] | Pulse (10 MHz) | Gaussian (AM+PM) | TLO (TDM+PDM) | 25 | DPC | Homodyne | 1 Mbps |
Y. Zhang et al. [39] | Pulse (5 MHz) | Gaussian (AM+PM) | TLO (TDM+PDM) | 202.81 | DPC | Homodyne | 6.214 bps |
S. Ren et al. [43] | Pulse (500 MHz) | Gaussian (AM+PM) | Pseudo LLO (TDM) | 15 | MPC | Heterodyne | 26.9 Mbps |
H. Wang et al. [46] | CW | QPSK (IQM) | LLO (TDM) | 25 | DPC | Heterodyne | 52.48 Mbps |
D. Pereira et al. [47] | CW | PCS-128APSK (IQM) | LLO | 40 | DSP | Heterodyne | 1.2 Mbps |
N. Jain et al. [48] | CW | Gaussian (IQM) | LLO (FDM) | 20 | DSP | Heterodyne | 4.71 Mbps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, S.; Koh, S.-T. Optical Link Design for Quantum Key Distribution-Integrated Optical Access Networks. Photonics 2025, 12, 418. https://doi.org/10.3390/photonics12050418
Bae S, Koh S-T. Optical Link Design for Quantum Key Distribution-Integrated Optical Access Networks. Photonics. 2025; 12(5):418. https://doi.org/10.3390/photonics12050418
Chicago/Turabian StyleBae, Sunghyun, and Seok-Tae Koh. 2025. "Optical Link Design for Quantum Key Distribution-Integrated Optical Access Networks" Photonics 12, no. 5: 418. https://doi.org/10.3390/photonics12050418
APA StyleBae, S., & Koh, S.-T. (2025). Optical Link Design for Quantum Key Distribution-Integrated Optical Access Networks. Photonics, 12(5), 418. https://doi.org/10.3390/photonics12050418